1
|
Alem D, García-Laviña CX, Garagorry F, Centurión D, Farias J, Pazos-Espinosa H, Cuitiño-Mendiberry MN, Villadóniga C, Castro-Sowinski S, Fló M, Carrión F, Iglesias B, Madauss K, Canclini L. Amyloids in bladder cancer hijack cancer-related proteins and are positive correlated to tumor stage. Sci Rep 2025; 15:4393. [PMID: 39910105 PMCID: PMC11799152 DOI: 10.1038/s41598-025-88307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Despite the current diagnostic and therapeutic approaches to bladder cancer being widely accepted, there have been few significant advancements in this field over the past decades. This underscores the necessity for a paradigm shift in the approach to bladder cancer. The role of amyloids in cancer remains unclear despite their identification in several other pathologies. In this study, we present evidence of amyloids in bladder cancer, both in vitro and in vivo. In a murine model of bladder cancer, a positive correlation was observed between amyloids and tumor stage, indicating an association between amyloids and bladder cancer progression. Subsequently, the amyloid proteome of the RT4 non-invasive and HT1197 invasive bladder cancer cell lines was identified and included oncogenes, tumor suppressors, and highly expressed cancer-related proteins. It is proposed that amyloids function as structures that sequester key proteins. Therefore, amyloids should be considered in the study and diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Diego Alem
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - César X García-Laviña
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francisco Garagorry
- Cátedra de Anatomía Patológica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Dardo Centurión
- Cátedra de Anatomía Patológica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquina Farias
- Espacio de Biología Vegetal del Noreste, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Hany Pazos-Espinosa
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Carolina Villadóniga
- Laboratorio de Biocatalizadores y sus Aplicaciones, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Biocatalizadores y sus Aplicaciones, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Martín Fló
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad Académica Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Biofísica de Proteínas, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Brenda Iglesias
- Research Technologies, Research Operations and Externalization, GSK-R&D, Boston, USA
| | - Kevin Madauss
- Research Technologies, Research Operations and Externalization, GSK-R&D, Boston, USA
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
2
|
Zhou J, Xu J, Cheng L, Li S, Jiang D, Zhang J, Sheng Y. Alteration of lncRNA RHPN1-AS1 predicts clinical prognosis and regulates the progression of bladder cancer via modulating miR-485-5p. Int J Biol Markers 2024; 39:284-291. [PMID: 39233606 DOI: 10.1177/03936155241281076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND Exploring effect biomarkers that monitor tumor progression and predict the prognosis could benefit the clinical management of bladder cancer and improve the postoperative life of patients. This study aimed to estimate the function of long non-coding (lnc)RNA RHPN1-AS1 (RHPN1-AS1) in bladder cancer and the potential molecular mechanism. METHODS The expression of RHPN1-AS1 was evaluated in bladder cancer tissues from 115 patients and cells by polymerase chain reaction. The clinical significance of RHPN1-AS1 was assessed and its effect was also estimated in cell proliferation, migration, and invasion. The underlying molecular mechanism was explored by the dual-luciferase reporter assay. RESULTS The expression of RHPN1-AS1 was 2.91-fold elevated in bladder cancer, which showed a close correlation with advanced tumor node metastasis stage (P = 0.013) and the presence of lymph node metastasis (P = 0.018). RHPN1-AS1 also served as a poor prognostic indicator (hazard ratio = 2.563) for bladder cancer. The knockdown of RHPN1-AS1 significantly suppressed the proliferation and metastasis ability of bladder cancer cells. Moreover, miR-485-5p was found to mediate the function of RHPN1-AS1 in bladder cancer, which was considered the underlying regulatory mechanism. CONCLUSIONS RHPN1-AS1 serves as a prognostic biomarker and tumor promoter in bladder cancer via modulating miR-485-5p, which might be a reliable target of bladder cancer therapy.
Collapse
Affiliation(s)
- Jingmin Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinshan Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lin Cheng
- Department of Urology Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Shuhui Li
- Department of Joint Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Deqi Jiang
- Department of Urology Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Jianchao Zhang
- Department of Urology Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yulong Sheng
- Department of Interventional Medicine, The Affiliated Hospital of Qingdao University (Pingdu), Qingdao, Shandong, China
| |
Collapse
|
3
|
Goto T, Teramoto Y, Nagata Y, Miyamoto H. Latrophilin-3 as a downstream effector of the androgen receptor induces bladder cancer progression. Discov Oncol 2024; 15:440. [PMID: 39269616 PMCID: PMC11399515 DOI: 10.1007/s12672-024-01324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Emerging evidence indicates that androgen receptor (AR) signaling plays a critical role in the pathogenesis of male-dominant urothelial cancer and its outgrowth. Meanwhile, latrophilins (LPHNs), a group of the G-protein-coupled receptors to which a spider venom latrotoxin (LTX) is known to bind, remain largely uncharacterized in neoplastic diseases. The present study aimed to determine the functional role of LPHN3 (encoded by the ADGRL3 gene), in association with AR signaling, in the progression of bladder cancer. In AR-positive bladder cancer lines, dihydrotestosterone considerably increased the expression levels of ADGRL3 and LPHN3, while chromatin immunoprecipitation assay revealed the binding of AR to the promoter region of ADGRL3. Treatment with LPHN3 ligands (e.g. α-LTX, FLRT3) resulted in the induction of ADGRL3 expression, as well as cell viability, in bladder cancer lines. By contrast, LPHN3 knockdown via shRNA virus infection significantly reduced the viability and migration of these cells. Immunohistochemistry in transurethral resection specimens further showed a strong correlation between LPHN3 and AR expression. Moreover, LPHN3 positivity in muscle-invasive bladder tumors, as an independent prognosticator, was associated with a significantly higher risk of disease progression and disease-specific mortality following radical cystectomy. These findings suggest that LPHN3 functions as a downstream effector of AR and promotes the growth of bladder cancer.
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuki Teramoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Yasui M, Cui L, Miyamoto H. Recent advances in the understanding of urothelial tumorigenesis. Expert Rev Anticancer Ther 2023; 23:485-493. [PMID: 37052619 DOI: 10.1080/14737140.2023.2203388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Patients with non-muscle-invasive bladder tumor suffer from disease recurrence following transurethral surgery even with intravesical pharmacotherapy, while muscle-invasive disease is often deadly. It is therefore critical to elucidate the underlying molecular mechanisms responsible for not only bladder tumor progression but also its tumorigenesis. Indeed, various molecules and/or signaling pathways have been suggested to contribute to the pathogenesis of bladder cancer. AREAS COVERED We summarize the progress during the last few years on the initiation or development, but not progression, of urothelial cancer. The clinical implications of these available data, including prognostic significance and possible application for the prevention of the recurrence of non-muscle-invasive bladder tumors, are also discussed. EXPERT OPINION Bladder cancer is a heterogeneous group of neoplasms. The establishment of personalized therapeutic options based on the molecular profile in each case should thus be considered. On that account, further accumulation of data on urothelial tumorigenesis is warranted to identify promising targets for the prevention of postoperative tumor recurrence or tumor development in otherwise high-risk patients.
Collapse
Affiliation(s)
- Masato Yasui
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
- James P. Wilmot Cancer Institute, Rochester, NY, USA
| | - Liam Cui
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, Rochester, NY, USA
- James P. Wilmot Cancer Institute, Rochester, NY, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Androgen Receptor Signaling Induces Cisplatin Resistance via Down-Regulating GULP1 Expression in Bladder Cancer. Int J Mol Sci 2021; 22:ijms221810030. [PMID: 34576193 PMCID: PMC8466436 DOI: 10.3390/ijms221810030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
The underlying molecular mechanisms of resistance to cisplatin-based systemic chemotherapy in bladder cancer patients remain to be elucidated, while the link between androgen receptor (AR) activity and chemosensitivity in urothelial cancer has been implicated. Our DNA microarray analysis in control vs. AR knockdown bladder cancer lines identified GULP1 as a potential target of AR signaling. We herein determined the relationship between AR activity and GULP1 expression in bladder cancer cells and then assessed the functional role of GULP1 in cisplatin sensitivity. Androgen treatment in AR-positive cells or AR overexpression in AR-negative cells considerably reduced the levels of GULP1 expression. Chromatin immunoprecipitation further showed direct interaction of AR with the promoter region of GULP1. Meanwhile, GULP1 knockdown sublines were significantly more resistant to cisplatin treatment compared with respective controls. GULP1 knockdown also resulted in a significant decrease in apoptosis, as well as a significant increase in G2/M phases, when treated with cisplatin. In addition, GULP1 was immunoreactive in 74% of muscle-invasive bladder cancers from patients who had subsequently undergone neoadjuvant chemotherapy, including 53% of responders showing moderate (2+)/strong (3+) expression vs. 23% of non-responders showing 2+/3+ expression (P = 0.044). These findings indicate that GULP1 represents a key downstream effector of AR signaling in enhancing sensitivity to cisplatin treatment.
Collapse
|
6
|
Kim CJ, Terado T, Tambe Y, Mukaisho KI, Kageyama S, Kawauchi A, Inoue H. Cryptotanshinone, a novel PDK 4 inhibitor, suppresses bladder cancer cell invasiveness via the mTOR/β‑catenin/N‑cadherin axis. Int J Oncol 2021; 59:40. [PMID: 33982789 PMCID: PMC8131085 DOI: 10.3892/ijo.2021.5220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
The phosphorylation of pyruvate dehydrogenase (PDH) by pyruvate dehydrogenase kinase (PDK) 4 inhibits its ability to induce a glycolytic shift. PDK4 expression is upregulated in various types of human cancer. Because PDK4 regulation is critical for metabolic changes in cancer cells, it is an attractive target for cancer therapy given its ability to shift glucose metabolism. It was previously shown that a novel PDK4 inhibitor, cryptotanshinone (CPT), suppressed the three‑dimensional (3D)‑spheroid formation of pancreatic and colorectal cancer cells. In the present study, the effects of CPT on the invasiveness of bladder cancer cells were investigated. CPT significantly suppressed the invasiveness and 3D‑spheroid formation of T24 and J82 bladder cancer cells. CPT also suppressed the phosphorylation of PDH and β‑catenin, as well as the expression of N‑cadherin, which are all critical for inducing epithelial‑mesenchymal transition (EMT). The knockdown of β‑catenin or PDK4 using specific small interfering RNAs suppressed N‑cadherin expression and invasiveness in T24 cells. An mTOR inhibitor also suppressed the phosphorylation of β‑catenin and N‑cadherin expression. Furthermore, CPT injection significantly suppressed pancreatic tumor growth and peritoneal dissemination of highly metastatic SUIT‑2 pancreatic cancer cells in a mouse orthotopic pancreatic cancer model, without evident toxicity. Moreover, immunohistochemistry analyses demonstrated decreased β‑catenin expression in CPT‑treated pancreatic tumors compared with control tumors. Taken together, these results indicate that CPT reduced the invasiveness and metastasis of bladder cancer cells by suppressing EMT via the mTOR/β‑catenin/N‑cadherin pathway.
Collapse
Affiliation(s)
- Chul Jang Kim
- Department of Urology, Kohka Public Hospital, Minakuchi-cho, Kohka, Shiga 528-0074, Japan
- Department of Urology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Tokio Terado
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yukihiro Tambe
- Division of Microbiology and Infectious Diseases, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Ken-Ichi Mukaisho
- Division of Human Pathology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hirokazu Inoue
- Division of Microbiology and Infectious Diseases, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
7
|
Miyamoto H. Intraoperative pathology consultation during urological surgery: Impact on final margin status and pitfalls of frozen section diagnosis. Pathol Int 2021; 71:567-580. [PMID: 34154033 DOI: 10.1111/pin.13132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
Despite recent improvements in diagnostic and surgical techniques in urological oncology, positive resection margin remains a significant concern for surgeons. Meanwhile, intraoperative pathology consultation with frozen section assessment (FSA), particularly for histological diagnosis of the lesions incidentally found or enlarged or sentinel lymph nodes, generally provides critical information which enables immediate decision making for optimal patient care. The intraoperative evaluation of surgical margins is also often requested, although there are some differences in its application between institutions and surgeons. Importantly, it remains to be determined whether intraoperative FSA indeed contributes to reducing the risk of final positive margins and thereby improving long-term patient outcomes. This review summarizes available data indicating the potential impact of FSA at the surgical margins during urological surgeries, including radical or partial cystectomy, partial nephrectomy, radical prostatectomy, penectomy, and orchiectomy. The accuracy and pitfalls of the intraoperative consultation/FSA diagnosis are also discussed.
Collapse
Affiliation(s)
- Hiroshi Miyamoto
- Departments of Pathology & Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
8
|
Ide H, Miyamoto H. Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy. Cells 2021; 10:1169. [PMID: 34064926 PMCID: PMC8150801 DOI: 10.3390/cells10051169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
There have been critical problems in the non-surgical treatment for bladder cancer, especially residence to intravesical pharmacotherapy, including BCG immunotherapy, cisplatin-based chemotherapy, and radiotherapy. Recent preclinical and clinical evidence has suggested a vital role of sex steroid hormone-mediated signaling in the progression of urothelial cancer. Moreover, activation of the androgen receptor and estrogen receptor pathways has been implicated in modulating sensitivity to conventional non-surgical therapy for bladder cancer. This may indicate the possibility of anti-androgenic and anti-estrogenic drugs, apart from their direct anti-tumor activity, to function as sensitizers of such conventional treatment. This article summarizes available data suggesting the involvement of sex hormone receptors, such as androgen receptor, estrogen receptor-α, and estrogen receptor-β, in the progression of urothelial cancer, focusing on their modulation for the efficacy of conventional therapy, and discusses their potential of overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Identification of BXDC2 as a Key Downstream Effector of the Androgen Receptor in Modulating Cisplatin Sensitivity in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13050975. [PMID: 33652650 PMCID: PMC7956795 DOI: 10.3390/cancers13050975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 02/19/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary It remains unclear why chemotherapy is often ineffective in patients with bladder cancer. Meanwhile, we previously reported that male sex hormones (i.e., androgens) could considerably reduce the efficacy of cisplatin, an anti-cancer drug used as the first-line treatment against advanced bladder cancer. The present study aimed to investigate how androgen receptor signaling, which is activated by binding of androgenic hormones, modulates sensitivity to cisplatin treatment in bladder cancer, using cell line models and surgical specimens. We found that the expression levels of the androgen receptor and a molecule (BXDC2) were inversely correlated and that loss of BXDC2 was associated with cisplatin resistance. We thus provide evidence to suggest an underlying molecular mechanism responsible for androgen receptor-induced chemoresistance in bladder cancer. Abstract Underlying mechanisms for resistance to cisplatin-based chemotherapy in bladder cancer patients are largely unknown, although androgen receptor (AR) activity, as well as extracellular signal-regulated kinase (ERK) signaling, has been indicated to correlate with chemosensitivity. We also previously showed ERK activation by androgen treatment in AR-positive bladder cancer cells. Because our DNA microarray analysis in control vs. AR-knockdown bladder cancer lines identified BXDC2 as a potential downstream target of AR, we herein assessed its functional role in cisplatin sensitivity, using bladder cancer lines and surgical specimens. BXDC2 protein expression was considerably downregulated in AR-positive or cisplatin-resistant cells. BXDC2-knockdown sublines were significantly more resistant to cisplatin, compared with respective controls. Without cisplatin treatment, BXDC2-knockdown resulted in significant increases/decreases in cell proliferation/apoptosis, respectively. An ERK activator was also found to reduce BXDC2 expression. Immunohistochemistry showed downregulation of BXDC2 expression in tumor (vs. non-neoplastic urothelium), higher grade/stage tumor (vs. lower grade/stage), and AR-positive tumor (vs. AR-negative). Patients with BXDC2-positive/AR-negative muscle-invasive bladder cancer had a significantly lower risk of disease-specific mortality, compared to those with a BXDC2-negative/AR-positive tumor. Additionally, in those undergoing cisplatin-based chemotherapy, BXDC2 positivity alone (p = 0.083) or together with AR negativity (p = 0.047) was associated with favorable response. We identified BXDC2 as a key molecule in enhancing cisplatin sensitivity. AR-ERK activation may thus be associated with chemoresistance via downregulating BXDC2 expression in bladder cancer.
Collapse
|
10
|
Ide H, Goto T, Teramoto Y, Mizushima T, Jiang G, Nagata Y, Inoue S, Baras AS, Kashiwagi E, Miyamoto H. FOXO1 inactivation induces cisplatin resistance in bladder cancer. Cancer Sci 2020; 111:3397-3400. [PMID: 32678492 PMCID: PMC7469822 DOI: 10.1111/cas.14557] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 01/09/2023] Open
Abstract
We found that FOXO1-shRNA sublines or FOXO1-positive cells co-treated with a FOXO1 inhibitor were significantly more resistant to cisplatin treatment at pharmacological concentrations, compared with respective control sublines or those with mock treatment. Western blot demonstrated considerable increases in the expression levels of a phosphorylated inactive form of FOXO1 (p-FOXO1) in cisplatin-resistant sublines established by long-term culture with low/increasing doses of cisplatin, compared with respective controls. Immunohistochemistry in surgical specimens from patients with muscle-invasive bladder cancer undergoing cisplatin-based neoadjuvant therapy further showed a strong trend to associate between p-FOXO1 positivity and unfavorable response to chemotherapy.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Takuro Goto
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
- James P. Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNYUSA
| | - Yuki Teramoto
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
- James P. Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNYUSA
| | - Taichi Mizushima
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
- James P. Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNYUSA
| | - Guiyang Jiang
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
- James P. Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNYUSA
| | - Yujiro Nagata
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
- James P. Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNYUSA
| | - Satoshi Inoue
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
- James P. Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNYUSA
| | - Alexander S. Baras
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Eiji Kashiwagi
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Hiroshi Miyamoto
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- James Buchanan Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
- James P. Wilmot Cancer InstituteUniversity of Rochester Medical CenterRochesterNYUSA
- Department of UrologyUniversity of Rochester Medical CenterRochesterNYUSA
| |
Collapse
|
11
|
Koie T, Hashimoto Y, Imai A, Yoneyama T, Tobisawa Y, Tanaka T, Noro D, Oikawa M, Suzuki T. Long-term chronological changes in urination status of patients who underwent ileal neobladder reconstruction at a single institution. Int Urol Nephrol 2020; 53:275-280. [PMID: 32870444 DOI: 10.1007/s11255-020-02629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This study aimed to investigate the long-term chronological changes in urination status of patients who underwent radical cystectomy (RC) followed by orthotopic ileal neobladder (ONB) reconstruction using the International Prostatic Symptoms Score (IPSS) and the Overactive Bladder Symptoms Score (OABSS). METHODS This retrospective study focused on patients who underwent RC followed by ONB reconstruction and those who consented for IPSS, quality of life (QOL) based on urinary symptoms (IPSS-QOL), and OABSS assessments in the follow-up period. The patients were divided according to gender into the male group (M-group) and female group (F-group). All patients were evaluated using IPSS, IPSS-QOL, and OABSS every 3 months. The primary endpoint was to assess chronological changes in the urination status of patients who underwent ONB reconstruction after RC. RESULTS The median age of the enrolled patients (n = 122) was 65 years and the median follow-up period was 92.0 months. The median voiding symptom score in IPSS after 10 years of surgery was significantly higher in the M-group than in the F-group. Contrarily, the F-group demonstrated a significantly higher median storage symptom score at 60-66 and 102-114 months than the M-group. The median OABSS scores were relatively higher in the F-group than in the M-group. CONCLUSIONS Although long-term urinary function with ONB demonstrated acceptable results, dysfunctional voiding was observed > 10 years after surgery. Thus, the changes in long-term urinary function should be considered when deciding ONB.
Collapse
Affiliation(s)
- Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Yasuhiro Hashimoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsushi Imai
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshikazu Tanaka
- Department of Urology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Daisuke Noro
- Department of Urology, Mutsu General Hospital, Mutsu, Japan
| | - Masaaki Oikawa
- Department of Urology, Oyokyo Kidney Research Institute, Aomori, Japan
| | - Tadashi Suzuki
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| |
Collapse
|