1
|
Than PP, Yao SJ, Althagafi E, Kaur K. A Conjugate of an EGFR-Binding Peptide and Doxorubicin Shows Selective Toxicity to Triple-Negative Breast Cancer Cells. ACS Med Chem Lett 2025; 16:109-115. [PMID: 39811122 PMCID: PMC11726362 DOI: 10.1021/acsmedchemlett.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Selective targeting of cancer cells via overexpressed cell-surface receptors is a promising strategy to enhance chemotherapy efficacy and minimize off-target side effects. In this study, we designed peptide 31 (YHWYGYTPERVI) to target the overexpressed epidermal growth factor receptor (EGFR) in triple-negative breast cancer (TNBC) cells. Peptide 31 is internalized by TNBC cells through EGFR-mediated endocytosis and shares sequence and structural similarities with human EGF (hEGF), a natural EGFR ligand. Unlike hEGF, peptide 31 does not induce cell migration in TNBC cells. A novel conjugate of peptide 31 with doxorubicin (Dox) retains selectivity for TNBC cells and exhibits significant toxicity comparable to that of unconjugated Dox. Importantly, this conjugate shows no toxicity toward normal breast epithelial cells up to a high concentration (25 μM). Thus, peptide 31 serves as a versatile targeting ligand for developing novel conjugates with high selectivity for EGFR-positive cancers.
Collapse
Affiliation(s)
- Phi-Phung Than
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| | - Shih-Jing Yao
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| | - Emad Althagafi
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| | - Kamaljit Kaur
- Chapman
University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
2
|
Matos B, Gomes AAS, Bernardino R, Alves MG, Howl J, Jerónimo C, Fardilha M. CAVPENET Peptide Inhibits Prostate Cancer Cells Proliferation and Migration through PP1γ-Dependent Inhibition of AKT Signaling. Pharmaceutics 2024; 16:1199. [PMID: 39339236 PMCID: PMC11434739 DOI: 10.3390/pharmaceutics16091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Protein phosphatase 1 (PP1) complexes have emerged as promising targets for anticancer therapies. The ability of peptides to mimic PP1-docking motifs, and so modulate interactions with regulatory factors, has enabled the creation of highly selective modulators of PP1-dependent cellular processes that promote tumor growth. The major objective of this study was to develop a novel bioactive cell-penetrating peptide (bioportide), which, by mimicking the PP1-binding motif of caveolin-1 (CAV1), would regulate PP1 activity, to hinder prostate cancer (PCa) progression. The designed bioportide, herein designated CAVPENET, and a scrambled homologue, were synthesized using microwave-assisted solid-phase methodologies and evaluated using PCa cell lines. Our findings indicate that CAVPENET successfully entered PCa cells to influence both viability and migration. This tumor suppressor activity of CAVPENET was attributed to inhibition of AKT signaling, a consequence of increased PP1γ activity. This led to the suppression of glycolytic metabolism and alteration in lipid metabolism, collectively representing the primary mechanism responsible for the anticancer properties of CAVPENET. Our results underscore the potential of the designed peptide as a novel therapy for PCa patients, setting the stage for further testing in more advanced models to fully realize its therapeutic promise.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Antoniel A S Gomes
- Department of Biophysics & Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu 18610-034, SP, Brazil
| | - Raquel Bernardino
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Marco G Alves
- Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| | - John Howl
- Faculty of Health, Education and Life Sciences, Birmingham City University, Edgbaston, Birmingham B15 3TN, UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Soon YY, Marschner IC, Schou M, Hofman MS, Emmett L, Davis ID, Stockler MR, Martin AJ. Lu-177 PSMA vs Comparator Treatments and Survival in Metastatic Castration-Resistant Prostate Cancer. JAMA Netw Open 2024; 7:e2433863. [PMID: 39287944 PMCID: PMC11409154 DOI: 10.1001/jamanetworkopen.2024.33863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024] Open
Abstract
Importance Observed treatment effects on overall survival (OS) differed substantially in the first 2 randomized clinical trials of lutetium Lu 177 vipivotide tetraxetan (Lu-177) prostate-specific membrane antigen (PSMA) in metastatic castration-resistant prostate cancer. Objective To investigate factors associated with the observed difference in treatment effects on OS, including differences in the risk of crossover from randomized treatment after disease progression. Design, Setting, and Participants This comparative effectiveness study used individual participant data from 2 randomized clinical trials, TheraP (A Randomised Phase 2 Trial of 177Lu-PSMA617 Theranostic Versus Cabazitaxel in Progressive Metastatic Castration Resistant Prostate Cancer [ANZUP Protocol 1603]) (n = 200), recruited from February 2018 to September 2019 in Australia, and published data from VISION (An International, Prospective, Open Label, Multicenter, Randomized Phase 3 Study of 177Lu-PSMA-617 in the Treatment of Patients With Progressive PSMA-Positive Metastatic Castration-Resistant Prostate Cancer) (n = 831), recruited from June 2018 to October 2019 in North America and Europe. Individual participant data for OS were reconstructed from VISION using the published survival curves. Data were analyzed February 6, 2018, to December 31, 2021, for TheraP and June 4, 2018, to January 27, 2021, for VISION. Interventions TheraP randomized participants to receive treatment with Lu-177 PSMA or cabazitaxel. VISION randomized participants to receive treatment with or without Lu-177 PSMA in addition to physicians' choice of protocol-permitted treatments (PPT; approved hormonal treatments [such as abiraterone and enzalutamide], bisphosphonates, radiotherapy, denosumab, or glucocorticoids), excluding cabazitaxel. Main Outcomes and Measures Patient characteristics, treatment protocols, and OS outcomes of the 2 trials were compared. Estimates of the effect on OS from TheraP were adjusted for crossover from randomly assigned treatment using a rank-preserving structural failure time model (RPSFTM) and inverse probability of censoring weights (IPCW) methods. Results The 200 participants in TheraP and 831 participants in VISION were similar in age (median [range], 72 [49-86] vs 71 [40-94] years). Improved OS was observed in the comparator treatment group (cabazitaxel) in TheraP compared with VISION (PPT) (hazard ratio [HR], 0.53 [95% CI, 0.39-0.71]). The Lu-177 PSMA treatment groups in TheraP and VISION had similar OS (HR, 0.92 [95% CI, 0.70-1.19]). In TheraP, 20 of 101 participants in the cabazitaxel group crossed over to Lu-177 PSMA, while 32 of 99 participants in the Lu-177 PSMA arm crossed over to cabazitaxel. No statistically significant differences in OS between the Lu-177 PSMA and cabazitaxel groups of TheraP were observed after controlling for crossover to cabazitaxel: RPSFTM HR, 0.97 (95% CI, 0.60-1.58); IPCW HR, 0.92 (95% CI, 0.65-1.32); RPSFTM HR, 0.97 (95% CI, 0.60-1.58) and IPCW HR, 0.82 (95% CI, 0.54-1.24) for crossover to Lu-177 PSMA; RPSFTM HR, 0.96 (95% CI, 0.53-1.74) and IPCW HR, 0.82 (95% CI, 0.53-1.27) for crossover to either Lu-177 PSMA or cabazitaxel. Conclusions and Relevance Findings of this secondary analysis of the TheraP and VISION randomized clinical trials suggest that the choice of comparator treatments (ie, cabazitaxel vs PPT) may explain the difference in the observed effect of Lu-177 PSMA on OS between the 2 trials. Causal inference methods such as RPSFTM and IPCW may help rule out crossover as a plausible explanation.
Collapse
Affiliation(s)
- Yu Yang Soon
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Radiation Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ian C. Marschner
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Manjula Schou
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence; Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent’s Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ian D. Davis
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
- Eastern Health, Melbourne, Victoria, Australia
| | - Martin R. Stockler
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, New South Wales, Australia
| | - Andrew J. Martin
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Rahman M, Akter K, Ahmed KR, Fahim MMH, Aktary N, Park MN, Shin SW, Kim B. Synergistic Strategies for Castration-Resistant Prostate Cancer: Targeting AR-V7, Exploring Natural Compounds, and Optimizing FDA-Approved Therapies. Cancers (Basel) 2024; 16:2777. [PMID: 39199550 PMCID: PMC11352813 DOI: 10.3390/cancers16162777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains a significant therapeutic challenge due to its resistance to standard androgen deprivation therapy (ADT). The emergence of androgen receptor splice variant 7 (AR-V7) has been implicated in CRPC progression, contributing to treatment resistance. Current treatments, including first-generation chemotherapy, androgen receptor blockers, radiation therapy, immune therapy, and PARP inhibitors, often come with substantial side effects and limited efficacy. Natural compounds, particularly those derived from herbal medicine, have garnered increasing interest as adjunctive therapeutic agents against CRPC. This review explores the role of AR-V7 in CRPC and highlights the promising benefits of natural compounds as complementary treatments to conventional drugs in reducing CRPC and overcoming therapeutic resistance. We delve into the mechanisms of action underlying the anti-CRPC effects of natural compounds, showcasing their potential to enhance therapeutic outcomes while mitigating the side effects associated with conventional therapies. The exploration of natural compounds offers promising avenues for developing novel treatment strategies that enhance therapeutic outcomes and reduce the adverse effects of conventional CRPC therapies. These compounds provide a safer, more effective approach to managing CRPC, representing a significant advancement in improving patient care.
Collapse
Affiliation(s)
- Muntajin Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Khadija Akter
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Md. Maharub Hossain Fahim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Nahida Aktary
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
| | - Sang-Won Shin
- Department of Humanities & Social Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.R.); (K.R.A.); (M.M.H.F.); (N.A.); (M.N.P.)
- Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
5
|
Al Musaimi O. Peptide Therapeutics: Unveiling the Potential against Cancer-A Journey through 1989. Cancers (Basel) 2024; 16:1032. [PMID: 38473389 PMCID: PMC11326481 DOI: 10.3390/cancers16051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The United States Food and Drug Administration (FDA) has approved a plethora of peptide-based drugs as effective drugs in cancer therapy. Peptides possess high specificity, permeability, target engagement, and a tolerable safety profile. They exhibit selective binding with cell surface receptors and proteins, functioning as agonists or antagonists. They also serve as imaging agents for diagnostic applications or can serve a dual-purpose as both diagnostic and therapeutic (theragnostic) agents. Therefore, they have been exploited in various forms, including linkers, peptide conjugates, and payloads. In this review, the FDA-approved prostate-specific membrane antigen (PSMA) peptide antagonists, peptide receptor radionuclide therapy (PRRT), somatostatin analogs, antibody-drug conjugates (ADCs), gonadotropin-releasing hormone (GnRH) analogs, and other peptide-based anticancer drugs are analyzed in terms of their chemical structures and properties, therapeutic targets and mechanisms of action, development journey, administration routes, and side effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle upon Tyne NE1 7RU, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
6
|
Sangwan K, Sharma V, Goyal PK. Pharmacological Profile of Novel Anti-cancer Drugs Approved by USFDA in 2022: A Review. Curr Mol Med 2024; 24:734-750. [PMID: 37350009 DOI: 10.2174/1566524023666230622151034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND For any drug molecule, it is mandatory to pass the drug approval process of the concerned regulatory authority, before being marketed. The Food and Drug Administration (FDA), throughout the year, approves several new drugs for safety and efficacy. In addition to new drug approvals, FDA also works on improving access to generic drugs, aimed to lower the cost of drugs for patients and improve access to treatments. In the year 2022 twelve new drug therapies were approved for managing varying cancers. METHODS This manuscript is focused to describe the pharmacological aspects including therapeutic uses, mechanisms of actions, pharmacokinetics, adverse effects, doses, indication for special cases, contraindications, etc., of novel FDA-approved anticancer drug therapies in the year 2022. RESULT FDA has approved about 29% (11 out of 37) novel drug therapies for varying types of cancers such as lung cancer, breast cancer, prostate cancer, melanoma, leukemia, etc. The Center for Drug Evaluation and Research CDER has reported that 90% of these anticancer drugs (e.g. Adagrasib, Futibatinib, Mirvetuximabsoravtansinegynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Olutasidenib, Pacritinib, Tebentafusp-tebn, Teclistamab-cqyv, and Tremelimumab-actl) as orphan drugs and recommended to treat rare or uncommon cancers such as non-small cell lung cancer, metastatic intrahepatic cholangio-carcinoma, epithelial ovarian cancer, follicular lymphoma, metastatic melanoma, metastatic uveal melanoma, etc. CDER has identified six anticancer drugs (e.g. Lutetium (177Lu)vipivotidetetraxetan, Mirvetuximabsoravtansine- gynx, Mosunetuzumab-axb, Nivolumab and relatlimab-rmbw, Tebentafusp-tebn, Teclistamab-cqyv) as first-in-class drugs i.e. drugs having different mechanisms of action from the already existing ones. The newly approved anticancer drugs shall provide more efficient treatment options for cancer patients. Three FDA-approved anticancer drugs in the year 2023 are also briefly described in the manuscript. CONCLUSION This manuscript, describing the pharmacological aspects of eleven anticancer novel drug therapies approved by the FDA, shall serve as a helpful document for cancer patients, concerned academicians, researchers, and clinicians, especially oncologists.
Collapse
Affiliation(s)
- Kavita Sangwan
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| | - Vipasha Sharma
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| | - Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Samalkha, Panipat, 132102, Haryana, India
| |
Collapse
|
7
|
Gao X, Tang Y, Chen M, Li J, Yin H, Gan Y, Zu X, Cai Y, Hu S. A prospective comparative study of [ 68Ga]Ga-RM26 and [ 68Ga]Ga-PSMA-617 PET/CT imaging in suspicious prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:2177-2187. [PMID: 36811661 DOI: 10.1007/s00259-023-06142-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA)-based PET/CT imaging has limitations in the diagnosis of prostate cancer (PCa). We recruited 207 participants with suspicious PCa to perform PET/CT imaging with radiolabeled gastrin-releasing peptide receptor (GRPR) antagonist, [68Ga]Ga-RM26, and compare with [68Ga]Ga-PSMA-617 and histopathology. METHODS Every participant with suspicious PCa was scanned with both [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT. PET/CT imaging was compared using pathologic specimens as a reference standard. RESULTS Of the 207 participants analyzed, 125 had cancer, and 82 were diagnosed with benign prostatic hyperplasia (BPH). The sensitivity and specificity of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT imaging differed significantly for detecting clinically significant PCa. The area under the ROC curve (AUC) was 0.54 for [68Ga]Ga-RM26 PET/CT and 0.91 for [68Ga]Ga-PSMA-617 PET/CT in detecting PCa. For clinically significant PCa imaging, the AUCs were 0.51 vs. 0.93, respectively. [68Ga]Ga-RM26 PET/CT imaging had higher sensitivity for PCa with Gleason score (GS) = 6 (p = 0.03) than [68Ga]Ga-PSMA-617 PET/CT but poor specificity (20.73%). In the group with PSA < 10 ng/mL, the sensitivity, specificity, and AUC of [68Ga]Ga-RM26 PET/CT were lower than [68Ga]Ga-PSMA-617 PET/CT (60.00% vs. 80.30%, p = 0.12, 23.26% vs. 88.37%, p = 0.000, and 0.524 vs. 0.822, p = 0.000, respectively). [68Ga]Ga-RM26 PET/CT exhibited significantly higher SUVmax in specimens with GS = 6 (p = 0.04) and in the low-risk group (p = 0.01), and its uptake did not increase with PSA level, GS, or clinical stage. CONCLUSION This prospective study provided evidence for the superior accuracy of [68Ga]Ga-PSMA-617 PET/CT over [68Ga]Ga-RM26 PET/CT in detecting more clinically significant PCa. [68Ga]Ga-RM26 PET/CT showed an advantage for imaging low-risk PCa.
Collapse
Affiliation(s)
- Xiaomei Gao
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Minfeng Chen
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Jian Li
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Hongling Yin
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Yu Gan
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China
| | - Xiongbin Zu
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| | - Shuo Hu
- Department of Nuclear Medicine, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Hunan Province, No.87 Xiangya Road, Changsha City, 410008, People's Republic of China.
| |
Collapse
|
8
|
Orozco Scott P, Deshpande P, Abramson M. Genitourinary Cancer: Updates on Treatments and Their Impact on the Kidney. Semin Nephrol 2023; 42:151344. [PMID: 37172546 DOI: 10.1016/j.semnephrol.2023.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genitourinary cancers are diverse in their presentation, prevalence, and mortality risk. Although there have been significant advancements in medical (eg, immune checkpoint inhibitors and tyrosine kinase inhibitors) and surgical treatments of genitourinary cancers, patients are still at risk for chronic kidney disease, hypertension, and electrolyte derangements in the short and long term. In addition, pre-existing kidney disease may increase the risk of developing some genitourinary cancers. This review focuses on the kidney-related effects of treatments for renal cell carcinoma and bladder and prostate cancers.
Collapse
Affiliation(s)
- Paloma Orozco Scott
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, Medical School, New York, NY.
| | - Priya Deshpande
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthew Abramson
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
9
|
Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. 2022 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals (Basel) 2023; 16:ph16030336. [PMID: 36986436 PMCID: PMC10056021 DOI: 10.3390/ph16030336] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
A total of 37 new drug entities were approved in 2022; although that year registered the lowest number of drug approvals since 2016, the TIDES class consolidated its presence with a total of five authorizations (four peptides and one oligonucleotide). Interestingly, 23 out of 37 drugs were first-in-class and thus received fast-track designation by the FDA in categories such as breakthrough therapy, priority review voucher, orphan drug, accelerated approval, and so on. Here, we analyze the TIDES approved in 2022 on the basis of their chemical structure, medical target, mode of action, administration route, and common adverse effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
- Correspondence: (O.A.M.); (B.G.d.l.T.); Tel.: +44-7398-561-752 (O.A.M.); +27-614047528 (B.G.d.l.T.)
| | - Danah Al Shaer
- Department of Medicinal Chemistry, Evotec (UK) Ltd., Abingdon OX14 4R, UK
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G. de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
- Correspondence: (O.A.M.); (B.G.d.l.T.); Tel.: +44-7398-561-752 (O.A.M.); +27-614047528 (B.G.d.l.T.)
| |
Collapse
|