1
|
Wang F, Wang P, Wang X, Lu H, Han Y, Wang L, Li Z. Development and validation of a prediction model for the prognosis of renal cell carcinoma with liver metastases: a population-based cohort study. Front Med (Lausanne) 2024; 11:1464589. [PMID: 39691372 PMCID: PMC11649420 DOI: 10.3389/fmed.2024.1464589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
Background Current studies on the establishment of prognostic model for renal cell carcinoma (RCC) with liver metastases (LM) were scarce. This study aimed to develop nomograms to predict the prognosis of RCC with LM. Methods Patients diagnosed with RCC between 2010 and 2021 from the Surveillance, Epidemiology, and End Results (SEER) database were selected. The eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) machine learning algorithms were used to screen for the most influential factors affecting prognosis, and the Venn diagram method was employed for further refinement. Subsequently, a nomogram related to brain metastases was constructed. The performance of the nomograms was evaluated through receiver operating characteristics (ROC) curves, calibration plots, C-index, time-dependent C-index, and decision curve analysis (DCA). Kaplan-Meier (K-M) survival curves were used to provide additional verification of the clinical efficacy of the nomogram. Results This research comprised 2,395 RCC patients with LM. The Venn diagram demonstrated that age, histological type, grade, AJCC T stage, AJCC N stage, surgery, chemotherapy, marital status, and lung metastasis were highly relevant variables to patients with LM. The AUC, C-index, calibration curves, and DCA curves showed excellent performance of the nomogram. Additionally, the prognostic nomogram accurately classified RCC with LM patients into low- and high-risk groups for mortality. Conclusion This study developed a novel nomogram to predict the prognostic factors of RCC with LM, providing a valuable reference for making accurate clinical decisions.
Collapse
Affiliation(s)
- Fei Wang
- Department of Reproductive Medicine, Central Hospital of Zhumadian, Henan, China
| | - Pan Wang
- Department of Urology and Male Reproductive Health, Maternal and Child Health Hospital, Luoyang, China
| | - Xihao Wang
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Hengming Lu
- Department of Gastroenterology, Central Hospital of Zhumadian, Henan, China
| | - Yuchun Han
- Department of Urology, Women and Children's Hospital, Central Hospital of Zhumadian, Henan, China
| | - Lianqu Wang
- Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Zhihui Li
- Department of Reproductive Medicine, Central Hospital of Zhumadian, Henan, China
| |
Collapse
|
2
|
Wang S, Gao P, Wang X, Duan L, He X, Qu J. Clinical utility of keratin 14 expression measurement in reflecting the tumor properties and prognosis in patients with renal cell carcinoma: a study with long-term follow-up. Int Urol Nephrol 2024; 56:2045-2053. [PMID: 38206525 DOI: 10.1007/s11255-023-03923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE Keratin 14 (KRT14) is hypothesized to be involved in the pathogenesis of renal cell carcinoma (RCC) based on its tumorigenic role in various cancers and its relationship with the prognosis of other urinary system malignancies. This study aimed to evaluate the correlation of KRT14 with tumor properties and prognosis in RCC patients. METHODS Data from 180 RCC patients who received tumor resection were retrospectively reviewed. The KRT14 was assessed by immunohistochemistry (IHC) staining in tumor tissues and non-tumor tissues. RESULTS KRT14 was insufficiently expressed in both tumor and non-tumor tissues, with median (interquartile range) IHC score of 2.0 (0.0-3.4) and 1.0 (0.0-2.0), respectively. While it was relatively higher in tumor versus non-tumor tissues (P < 0.001). Besides, tumor KRT14 was positively correlated with the pathological grade (P = 0.038), tumor size (P = 0.012), T stage (P = 0.006), and TNM stage (P = 0.018). Interestingly, tumor KRT14 high predicted shorter accumulating recurrence-free survival (RFS) (P = 0.003) and accumulating overall survival (OS) (P = 0.001), which was further verified by the multivariate Cox's regression analysis (both P < 0.05). Furthermore, tumor KRT14 high estimated shorter RFS and OS from the Gene Expression Profiling Interactive Analysis and Human Protein ATLAS databases (all P < 0.05). Subgroup analyses indicated that the correlation of tumor KRT14 with accumulating RFS and accumulating OS was more pronounced in RCC patients with better physical status (such as age < 65 years and better eastern cooperative oncology group performance status) and higher tumor stages (such as higher pathological grade). CONCLUSION High KRT14 in tumor tissue could reflect an advanced tumor features and unsatisfying survival in RCC patients.
Collapse
Affiliation(s)
- Shuangyu Wang
- Department of Nephrology, Handan Central Hospital, Handan, 056000, China
| | - Peng Gao
- Department of Traditional Chinese Medicine, Han Mine General Hospital of North China Medical Health Group, Handan, 056000, China
| | - Xiaozhi Wang
- Department of Emergency, Handan Central Hospital, No. 59 Congtai North Road, Handan, 056000, China
| | - Liping Duan
- Department of Nephrology, Handan Central Hospital, Handan, 056000, China
| | - Xinmei He
- Department of Nephrology, Handan Central Hospital, Handan, 056000, China
| | - Juanjuan Qu
- Department of Emergency, Handan Central Hospital, No. 59 Congtai North Road, Handan, 056000, China.
| |
Collapse
|
3
|
Roussel E, Amparore D, Bertolo R, Erdem S, Marchioni M, Pavan N, Campi R. Renal cell carcinoma with non-clear cell histologies: all the same peas in one pod? Minerva Urol Nephrol 2023; 75:529-531. [PMID: 37530663 DOI: 10.23736/s2724-6051.23.05433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Affiliation(s)
- Eduard Roussel
- Department of Urology, University Hospitals of Leuven, Leuven, Belgium
| | - Daniele Amparore
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | | | - Selçuk Erdem
- Division of Urologic Oncology, Department of Urology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Michele Marchioni
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio Chieti-Pescara University, Chieti, Italy
- Department of Urology, SS Annunziata Hospital, G. D'Annunzio Chieti-Pescara University, Chieti, Italy
| | - Nicola Pavan
- Unit of Urology, Department of Surgical, Oncological and Oral Sciences, P. Giaccone University Hospital, Palermo, Italy
| | - Riccardo Campi
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Hospital, University of Florence, Florence, Italy -
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Distante A, Marandino L, Bertolo R, Ingels A, Pavan N, Pecoraro A, Marchioni M, Carbonara U, Erdem S, Amparore D, Campi R, Roussel E, Caliò A, Wu Z, Palumbo C, Borregales LD, Mulders P, Muselaers CHJ. Artificial Intelligence in Renal Cell Carcinoma Histopathology: Current Applications and Future Perspectives. Diagnostics (Basel) 2023; 13:2294. [PMID: 37443687 DOI: 10.3390/diagnostics13132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Renal cell carcinoma (RCC) is characterized by its diverse histopathological features, which pose possible challenges to accurate diagnosis and prognosis. A comprehensive literature review was conducted to explore recent advancements in the field of artificial intelligence (AI) in RCC pathology. The aim of this paper is to assess whether these advancements hold promise in improving the precision, efficiency, and objectivity of histopathological analysis for RCC, while also reducing costs and interobserver variability and potentially alleviating the labor and time burden experienced by pathologists. The reviewed AI-powered approaches demonstrate effective identification and classification abilities regarding several histopathological features associated with RCC, facilitating accurate diagnosis, grading, and prognosis prediction and enabling precise and reliable assessments. Nevertheless, implementing AI in renal cell carcinoma generates challenges concerning standardization, generalizability, benchmarking performance, and integration of data into clinical workflows. Developing methodologies that enable pathologists to interpret AI decisions accurately is imperative. Moreover, establishing more robust and standardized validation workflows is crucial to instill confidence in AI-powered systems' outcomes. These efforts are vital for advancing current state-of-the-art practices and enhancing patient care in the future.
Collapse
Affiliation(s)
- Alfredo Distante
- Department of Urology, Catholic University of the Sacred Heart, 00168 Roma, Italy
- Department of Urology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Laura Marandino
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Riccardo Bertolo
- Department of Urology, San Carlo Di Nancy Hospital, 00165 Rome, Italy
| | - Alexandre Ingels
- Department of Urology, University Hospital Henri Mondor, APHP (Assistance Publique-Hôpitaux de Paris), 94000 Créteil, France
| | - Nicola Pavan
- Department of Surgical, Oncological and Oral Sciences, Section of Urology, University of Palermo, 90133 Palermo, Italy
| | - Angela Pecoraro
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, 10043 Turin, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti, 66100 Chieti, Italy
| | - Umberto Carbonara
- Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation-Urology, University of Bari, 70121 Bari, Italy
| | - Selcuk Erdem
- Division of Urologic Oncology, Department of Urology, Istanbul University Istanbul Faculty of Medicine, Istanbul 34093, Turkey
| | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, 10043 Turin, Italy
| | - Riccardo Campi
- Urological Robotic Surgery and Renal Transplantation Unit, Careggi Hospital, University of Florence, 50121 Firenze, Italy
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Anna Caliò
- Section of Pathology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Zhenjie Wu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Carlotta Palumbo
- Division of Urology, Maggiore della Carità Hospital of Novara, Department of Translational Medicine, University of Eastern Piedmont, 13100 Novara, Italy
| | - Leonardo D Borregales
- Department of Urology, Well Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Peter Mulders
- Department of Urology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Constantijn H J Muselaers
- Department of Urology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Wang J, Jordan AR, Zhu H, Hasanali SL, Thomas E, Lokeshwar SD, Morera DS, Alexander S, McDaniels J, Sharma A, Aguilar K, Sarcan S, Zhu T, Soloway MS, Terris MK, Thangaraju M, Lopez LE, Lokeshwar VB. Targeting hyaluronic acid synthase-3 (HAS3) for the treatment of advanced renal cell carcinoma. Cancer Cell Int 2022; 22:421. [PMID: 36581895 PMCID: PMC9801563 DOI: 10.1186/s12935-022-02818-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/30/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyaluronic acid (HA) promotes cancer metastasis; however, the currently approved treatments do not target HA. Metastatic renal carcinoma (mRCC) is an incurable disease. Sorafenib (SF) is a modestly effective antiangiogenic drug for mRCC. Although only endothelial cells express known SF targets, SF is cytotoxic to RCC cells at concentrations higher than the pharmacological-dose (5-µM). Using patient cohorts, mRCC models, and SF combination with 4-methylumbelliferone (MU), we discovered an SF target in RCC cells and targeted it for treatment. METHODS We analyzed HA-synthase (HAS1, HAS2, HAS3) expression in RCC cells and clinical (n = 129), TCGA-KIRC (n = 542), and TCGA-KIRP (n = 291) cohorts. We evaluated the efficacy of SF and SF plus MU combination in RCC cells, HAS3-transfectants, endothelial-RCC co-cultures, and xenografts. RESULTS RCC cells showed increased HAS3 expression. In the clinical and TCGA-KIRC/TCGA-KIRP cohorts, higher HAS3 levels predicted metastasis and shorter survival. At > 10-µM dose, SF inhibited HAS3/HA-synthesis and RCC cell growth. However, at ≤ 5-µM dose SF in combination with MU inhibited HAS3/HA synthesis, growth of RCC cells and endothelial-RCC co-cultures, and induced apoptosis. The combination inhibited motility/invasion and an HA-signaling-related invasive-signature. We previously showed that MU inhibits SF inactivation in RCC cells. While HAS3-knockdown transfectants were sensitive to SF, ectopic-HAS3-expression induced resistance to the combination. In RCC models, the combination inhibited tumor growth and metastasis with little toxicity; however, ectopic-HAS3-expressing tumors were resistant. CONCLUSION HAS3 is the first known target of SF in RCC cells. In combination with MU (human equivalent-dose, 0.6-1.1-g/day), SF targets HAS3 and effectively abrogates mRCC.
Collapse
Affiliation(s)
- Jiaojiao Wang
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA ,grid.513391.c0000 0004 8339 0314Present Address: Maoming People’s Hospital, Maoming, China
| | - Andre R. Jordan
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA ,grid.265219.b0000 0001 2217 8588Present Address: Tulane University School of Medicine, New Orleans, USA
| | - Huabin Zhu
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA ,grid.432444.1Present Address: Advanced RNA Technologies, Boulder, USA
| | - Sarrah L. Hasanali
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA ,grid.63368.380000 0004 0445 0041Present Address: Houston Methodist Hospital, Houston, USA
| | - Eric Thomas
- grid.410427.40000 0001 2284 9329Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912 USA
| | - Soum D. Lokeshwar
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA ,grid.47100.320000000419368710Present Address: Yale University School of Medicine, New Haven, USA
| | - Daley S. Morera
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Sung Alexander
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Joseph McDaniels
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Anuj Sharma
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Karina Aguilar
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Semih Sarcan
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Tianyi Zhu
- Greenbrier High School, Evans, GA 30809 USA
| | - Mark S. Soloway
- grid.489080.d0000 0004 0444 4637Memorial Healthcare System, Aventura, FL 33180 USA
| | - Martha K. Terris
- grid.410427.40000 0001 2284 9329Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912 USA
| | - Muthusamy Thangaraju
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Luis E. Lopez
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| | - Vinata B. Lokeshwar
- grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, Room CN 1177A, Augusta, GA 30912 USA
| |
Collapse
|