1
|
Hernández‐Camacho JD, Vicente‐García C, Ardila‐García L, Padilla‐Campos A, López‐Lluch G, Santos‐Ocaña C, Zammit PS, Carvajal JJ, Navas P, Fernández‐Ayala DJ. Prenatal and progressive coenzyme Q 10 administration to mitigate muscle dysfunction in mitochondrial disease. J Cachexia Sarcopenia Muscle 2024; 15:2402-2416. [PMID: 39354863 PMCID: PMC11634497 DOI: 10.1002/jcsm.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND ADCK genes encode aarF domain-containing mitochondrial kinases involved in coenzyme Q (CoQ) biosynthesis and regulation. Haploinsufficiency of ADCK2 in humans leads to adult-onset physical incapacity with reduced mitochondrial CoQ levels in skeletal muscle, resulting in mitochondrial myopathy and alterations in fatty acid β-oxidation. The sole current treatment for CoQ deficiencies is oral administration of CoQ10, which causes only partial recovery with postnatal treatment, underscoring the importance of early diagnosis for successful intervention. METHODS We used Adck2 heterozygous mice to examine the influence of this gene on muscle structure, function and regeneration throughout development, growth and ageing. This investigation involved techniques including immunohistochemistry, analysis of CoQ levels, mitochondrial respiratory content, muscle transcriptome analysis and functional tests. RESULTS We demonstrated that Adck2 heterozygous mice exhibit defects from embryonic development, particularly in skeletal muscle (1102 genes deregulated). Adck2 heterozygous embryos were 7% smaller in size and displayed signs of delayed development. Prenatal administration of CoQ10 could mitigate these embryonic defects. Heterozygous Adck2 mice also showed a decrease in myogenic cell differentiation, with more severe consequences in 'aged' mice (41.63% smaller) (P < 0.01). Consequently, heterozygous Adck2 mice displayed accelerated muscle wasting associated with ageing in muscle structure (P < 0.05), muscle function (less grip strength capacity) (P < 0.001) and muscle mitochondrial respiration (P < 0.001). Furthermore, progressive CoQ10 administration conferred protective effects on mitochondrial function (P < 0.0001) and skeletal muscle (P < 0.05). CONCLUSIONS Our work uncovered novel aspects of CoQ deficiencies, revealing defects during embryonic development in mammals for the first time. Additionally, we identified the gradual establishment and progression of the deleterious Adck2 mouse phenotype. Importantly, CoQ10 supplementation demonstrated a protective effect when initiated during development.
Collapse
Affiliation(s)
- Juan Diego Hernández‐Camacho
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | | | - Lorena Ardila‐García
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
| | - Ana Padilla‐Campos
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
| | - Guillermo López‐Lluch
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | - Carlos Santos‐Ocaña
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Jaime J. Carvajal
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| | - Daniel J.M. Fernández‐Ayala
- Centro Andaluz de Biología del Desarrollo—CSICUniversidad Pablo de OlavideSevilleSpain
- CIBERERInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Wang S, Haas C, Wang Z, Du J, Lin Z, Hong G, Li L, Tao R, Shen Y, Neubauer J. Coenzyme Q deficiency may predispose to sudden unexplained death via an increased risk of cardiac arrhythmia. Int J Legal Med 2024; 138:2239-2248. [PMID: 38844616 PMCID: PMC11490525 DOI: 10.1007/s00414-024-03265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/30/2024] [Indexed: 10/20/2024]
Abstract
Cardiac arrhythmia is currently considered to be the direct cause of death in a majority of sudden unexplained death (SUD) cases, yet the genetic predisposition and corresponding endophenotypes contributing to SUD remain incompletely understood. In this study, we aimed to investigate the involvement of Coenzyme Q (CoQ) deficiency in SUD. First, we re-analyzed the exome sequencing data of 45 SUD and 151 sudden infant death syndrome (SIDS) cases from our previous studies, focusing on previously overlooked genetic variants in 44 human CoQ deficiency-related genes. A considerable proportion of the SUD (38%) and SIDS (37%) cases were found to harbor rare variants with likely functional effects. Subsequent burden testing, including all rare exonic and untranslated region variants identified in our case cohorts, further confirmed the existence of significant genetic burden. Based on the genetic findings, the influence of CoQ deficiency on electrophysiological and morphological properties was further examined in a mouse model. A significantly prolonged PR interval and an increased occurrence of atrioventricular block were observed in the 4-nitrobenzoate induced CoQ deficiency mouse group, suggesting that CoQ deficiency may predispose individuals to sudden death through an increased risk of cardiac arrhythmia. Overall, our findings suggest that CoQ deficiency-related genes should also be considered in the molecular autopsy of SUD.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, 8057, Switzerland
| | - Zhimin Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianghua Du
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guanghui Hong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Sciences, Ministry of Justice, Shanghai, 200063, China.
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, 8057, Switzerland.
| |
Collapse
|
3
|
Pan P, Zhou N, Sun Y, Chen Z, Han J, Zhou W. The Spectrum of clinical manifestations in newborns with the COQ4 mutation: case series and literature review. Front Pediatr 2024; 12:1410133. [PMID: 39398416 PMCID: PMC11466766 DOI: 10.3389/fped.2024.1410133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background Coenzyme Q10 (CoQ10) plays an important role in the electron transport chain within the human mitochondrial respiratory chain. The manifestations of this deficiency exhibit a diverse range. This study investigates the clinical manifestations of primary coenzyme Q10 deficiency in neonates with the COQ4 mutation to improve the diagnosis of the disease and the prognosis through targeted treatment. Methods We report 4 patients with primary coenzyme Q10 deficiency by COQ4 variants in neonates. A comprehensive literature search and review for original articles and case reports with COQ4 mutation published from January 1989 to November 2023 was performed through Pubmed. We review clinical manifestations, diagnostic approaches, and treatment monitoring in these and 20 previously reported patients. Results Within the cohort of four cases examined, three females and one male were identified from two distinct families. Specifically, case 1 and 2 consisted of monoamniotic twins. Cases 3 and 4 were siblings. A comprehensive review of 20 cases involving neonatal-onset COQ4 mutation was conducted. Half of the cases are Chinese. There was no statistically significant difference in the mortality between Chinese (9/12, 75%) and other regions (11/12, 91.7%) (P = 0.27). The survival time for the 24 cases was 60.0 ± 98.0 days (95% confidence interval CI: 0-252.0 days). The incidence of prenatal abnormalities in preterm infants was significantly higher than that in full-term infants (66.7% vs. 16.7%, P = 0.02). Hyperlactatemia was one of the most common manifestations, accounting for 75% of cases (18/24). Twenty of the 24 cases were diagnosed by whole exome sequencing. Only 9 patients received exogenous coenzyme Q10 treatment, and all the 4 surviving patients received coenzyme Q10 supplementation. Conclusion The prognosis of COQ4 mutation in the neonatal period indicates a low survival rate and an poor prognosis. This may be due to the incomplete understanding of the mechanism of how COQ4 gene defects lead to coenzyme Q10 deficiency and why CoQ10 supplementation does not respond well to treatment. To improve the diagnostic rate, in addition to genetic testing, mitochondrial functional verification should be prioritized in southern China, where the incidence is relatively high. It will facilitate more in-depth mechanistic studies.
Collapse
Affiliation(s)
- Pianpian Pan
- Nenoatal Intensive Care Unit, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhou
- Heart Center, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Sun
- Nenoatal Intensive Care Unit, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Chen
- Pathology Department, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Nenoatal Intensive Care Unit, Guangzhou Wowen and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hsia CCW. Tissue Perfusion and Diffusion and Cellular Respiration: Transport and Utilization of Oxygen. Semin Respir Crit Care Med 2023; 44:594-611. [PMID: 37541315 DOI: 10.1055/s-0043-1770061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.
Collapse
Affiliation(s)
- Connie C W Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
5
|
Stallworth JY, Blair DR, Slavotinek A, Moore AT, Duncan JL, de Alba Campomanes AG. Retinopathy and optic atrophy in a case of COQ2-related primary coenzyme Q 10 deficiency. Ophthalmic Genet 2023; 44:486-490. [PMID: 36420660 PMCID: PMC10205914 DOI: 10.1080/13816810.2022.2141792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe a case of primary coenzyme Q10 deficiency in a child manifesting as early-onset renal failure, retinal dystrophy, and optic atrophy leading to progressive vision loss. METHODS Clinical presentation and workup including visual fields, electroretinogram, and optical coherence tomography are presented. Genetic testing was performed. RESULTS An eight-year-old female with nephropathy requiring renal transplantation subsequently developed progressive cone-rod dystrophy and optic atrophy. The patient had negative results on a targeted next-generation sequencing retinal dystrophy panel but whole-exome sequencing revealed two variants in COQ2 (likely biallelic), consistent with a diagnosis of primary coenzyme Q10 deficiency. CONCLUSIONS Primary coenzyme Q10 deficiency is a rare disorder with variable systemic and ocular findings; there is also genetic heterogeneity. Genetic testing aids in the diagnosis of this condition, and variants in the COQ2 and PDSS1 genes appear to have the strongest association with ocular manifestations. Oral supplementation of coenzyme Q10 may slow progression of disease. This case highlights the utility of whole-exome sequencing in the diagnosis of a rare syndromic form of ocular disease and reports a novel phenotypic association for this condition.
Collapse
Affiliation(s)
| | - David R Blair
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Anthony T Moore
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
6
|
Pu TT, Wu W, Liang PD, Du JC, Han SL, Deng XL, Du XJ. Evaluation of Coenzyme Q10 (CoQ10) Deficiency and Therapy in Mouse Models of Cardiomyopathy. J Cardiovasc Pharmacol 2023; 81:259-269. [PMID: 36668724 PMCID: PMC10079299 DOI: 10.1097/fjc.0000000000001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/07/2023] [Indexed: 01/22/2023]
Abstract
ABSTRACT Mitochondrial dysfunction plays a key role in the development of heart failure, but targeted therapeutic interventions remain elusive. Previous studies have shown coenzyme Q10 (CoQ10) insufficiency in patients with heart disease with undefined mechanism and modest effectiveness of CoQ10 supplement therapy. Using 2 transgenic mouse models of cardiomyopathy owing to cardiac overexpression of Mst1 (Mst1-TG) or β 2 -adrenoceptor (β 2 AR-TG), we studied changes in cardiac CoQ10 content and alterations in CoQ10 biosynthesis genes. We also studied in Mst1-TG mice effects of CoQ10, delivered by oral or injection regimens, on both cardiac CoQ10 content and cardiomyopathy phenotypes. High performance liquid chromatography and RNA sequencing revealed in both models significant reduction in cardiac content of CoQ10 and downregulation of most genes encoding CoQ10 biosynthesis enzymes. Mst1-TG mice with 70% reduction in cardiac CoQ10 were treated with CoQ10 either by oral gavage or i.p. injection for 4-8 weeks. Oral regimens failed in increasing cardiac CoQ10 content, whereas injection regimen effectively restored the cardiac CoQ10 level in a time-dependent manner. However, CoQ10 restoration in Mst1-TG mice did not correct mitochondrial dysfunction measured by energy metabolism, downregulated expression of marker proteins, and oxidative stress nor to preserve cardiac contractile function. In conclusion, mouse models of cardiomyopathy exhibited myocardial CoQ10 deficiency likely due to suppressed endogenous synthesis of CoQ10. In contrast to ineffectiveness of oral administration, CoQ10 administration by injection regimen in cardiomyopathy mice restored cardiac CoQ10 content, which, however, failed in achieving detectable efficacy at molecular and global functional levels.
Collapse
Affiliation(s)
- Tian-Tian Pu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Wei Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Pei-Da Liang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jin-Chan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Sheng-Li Han
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xian Jiaotong University, Xi'an, China; and
| |
Collapse
|
7
|
Chinnery PF. Precision mitochondrial medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2022; 1:e6. [PMID: 38550943 PMCID: PMC10953752 DOI: 10.1017/pcm.2022.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2024]
Abstract
Mitochondria play a key role in cell homeostasis as a major source of intracellular energy (adenosine triphosphate), and as metabolic hubs regulating many canonical cell processes. Mitochondrial dysfunction has been widely documented in many common diseases, and genetic studies point towards a causal role in the pathogenesis of specific late-onset disorder. Together this makes targeting mitochondrial genes an attractive strategy for precision medicine. However, the genetics of mitochondrial biogenesis is complex, with over 1,100 candidate genes found in two different genomes: the nuclear DNA and mitochondrial DNA (mtDNA). Here, we review the current evidence associating mitochondrial genetic variants with distinct clinical phenotypes, with some having clear therapeutic implications. The strongest evidence has emerged through the investigation of rare inherited mitochondrial disorders, but genome-wide association studies also implicate mtDNA variants in the risk of developing common diseases, opening to door for the incorporation of mitochondrial genetic variant analysis in population disease risk stratification.
Collapse
Affiliation(s)
- Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
8
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
9
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
10
|
Navas P, Cascajo MV, Alcázar-Fabra M, Hernández-Camacho JD, Sánchez-Cuesta A, Rodríguez ABC, Ballesteros-Simarro M, Arroyo-Luque A, Rodríguez-Aguilera JC, Fernández-Ayala DJM, Brea-Calvo G, López-Lluch G, Santos-Ocaña C. Secondary CoQ 10 deficiency, bioenergetics unbalance in disease and aging. Biofactors 2021; 47:551-569. [PMID: 33878238 DOI: 10.1002/biof.1733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.
Collapse
Affiliation(s)
- Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María V Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Cortés Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Manuel Ballesteros-Simarro
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Arroyo-Luque
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Fernández-del-Río L, Clarke CF. Coenzyme Q Biosynthesis: An Update on the Origins of the Benzenoid Ring and Discovery of New Ring Precursors. Metabolites 2021; 11:385. [PMID: 34198496 PMCID: PMC8231959 DOI: 10.3390/metabo11060385] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme Q (ubiquinone or CoQ) is a conserved polyprenylated lipid essential for mitochondrial respiration. CoQ is composed of a redox-active benzoquinone ring and a long polyisoprenyl tail that serves as a membrane anchor. A classic pathway leading to CoQ biosynthesis employs 4-hydroxybenzoic acid (4HB). Recent studies with stable isotopes in E. coli, yeast, and plant and animal cells have identified CoQ intermediates and new metabolic pathways that produce 4HB. Stable isotope labeling has identified para-aminobenzoic acid as an alternate ring precursor of yeast CoQ biosynthesis, as well as other natural products, such as kaempferol, that provide ring precursors for CoQ biosynthesis in plants and mammals. In this review, we highlight how stable isotopes can be used to delineate the biosynthetic pathways leading to CoQ.
Collapse
Affiliation(s)
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA;
| |
Collapse
|
12
|
Schijvens AM, van de Kar NC, Bootsma-Robroeks CM, Cornelissen EA, van den Heuvel LP, Schreuder MF. Mitochondrial Disease and the Kidney With a Special Focus on CoQ 10 Deficiency. Kidney Int Rep 2020; 5:2146-2159. [PMID: 33305107 PMCID: PMC7710892 DOI: 10.1016/j.ekir.2020.09.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cytopathies include a heterogeneous group of diseases that are characterized by impaired oxidative phosphorylation, leading to multi-organ involvement and progressive clinical deterioration. Most mitochondrial cytopathies that cause kidney symptoms are characterized by tubular defects, but glomerular, tubulointerstitial, and cystic diseases have also been described. Mitochondrial cytopathies can result from mitochondrial or nuclear DNA mutations. Early recognition of defects in the coenzyme Q10 (CoQ10) biosynthesis is important, as patients with primary CoQ10 deficiency may be responsive to treatment with oral CoQ10 supplementation, in contrast to most mitochondrial diseases. A literature search was conducted to investigate kidney involvement in genetic mitochondrial cytopathies and to identify mitochondrial and nuclear DNA mutations involved in mitochondrial kidney disease. Furthermore, we identified all reported cases to date with a CoQ10 deficiency with glomerular involvement, including 3 patients with variable renal phenotypes in our clinic. To date, 144 patients from 95 families with a primary CoQ10 deficiency and glomerular involvement have been described based on mutations in PDSS1, PDSS2, COQ2, COQ6, and COQ8B/ADCK4. This review provides an overview of kidney involvement in genetic mitochondrial cytopathies with a special focus on CoQ10 deficiency.
Collapse
Affiliation(s)
- Anne M. Schijvens
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Nicole C. van de Kar
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Charlotte M. Bootsma-Robroeks
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Elisabeth A. Cornelissen
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| | - Lambertus P. van den Heuvel
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
- Department of Development and Regeneration,University Hospital Leuven, Leuven, Belgium
| | - Michiel F. Schreuder
- Department of Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Amalia Children’s Hospital, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Finsterer J. Clinical Therapeutic Management of Human Mitochondrial Disorders. Pediatr Neurol 2020; 113:66-74. [PMID: 33053453 DOI: 10.1016/j.pediatrneurol.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022]
Abstract
Despite recent advances in the elucidation of etiology and pathogenesis of mitochondrial disorders, their therapeutic management remains challenging. This review focuses on currently available therapeutic options for human mitochondrial disorders. Current treatment of mitochondrial disorders relies on symptomatic, multidisciplinary therapies of various manifestations in organs such as the brain, muscle, nerves, eyes, ears, endocrine organs, heart, intestines, kidneys, lungs, bones, bone marrow, cartilage, immune system, and skin. If respiratory chain functions are primarily or secondarily impaired, antioxidants or cofactors should be additionally given one by one. All patients with mitochondrial disorders should be offered an individually tailored diet and physical training program. Irrespective of the pathogenesis, all patients with mitochondrial disorders should avoid exposure to mitochondrion-toxic agents and environments. Specific treatment can be offered for stroke-like episodes, mitochondrial epilepsy, mitochondrial neurogastrointestinal encephalopathy, Leber hereditary optic neuropathy, thiamine-responsive Leigh syndrome, primary coenzyme Q deficiency, primary carnitine deficiency, Friedreich ataxia, ethylmalonic encephalopathy, acyl-CoA dehydrogenase deficiency, pyruvate dehydrogenase deficiency, and hereditary vitamin E deficiency. Preventing the transmission of mitochondrial DNA-related mitochondrial disorders can be achieved by mitochondrion replacement therapy (spindle transfer, pronuclear transfer). In conclusion, specific and nonspecific therapies for human mitochondrial disorders are available, and beneficial effects have been anecdotally reported. However, double-blind, placebo-controlled studies to confirm effectiveness are lacking for the majority of the measures applied to mitochondrial disorders. Transmission of certain mitochondrial disorders can be prevented by mitochondrion replacement therapy. A multidisciplinary approach is required to meet the therapeutic challenges of patients with mitochondrial disorders.
Collapse
|
14
|
Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int J Mol Sci 2020; 21:ijms21186695. [PMID: 32933108 PMCID: PMC7555759 DOI: 10.3390/ijms21186695] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extramitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant, plays an important role in fatty acid, pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. In view of the central role of CoQ10 in cellular metabolism, it is unsurprising that a CoQ10 deficiency is linked to the pathogenesis of a range of disorders. CoQ10 deficiency is broadly classified into primary or secondary deficiencies. Primary deficiencies result from genetic defects in the multi-step biochemical pathway of CoQ10 synthesis, whereas secondary deficiencies can occur as result of other diseases or certain pharmacotherapies. In this article we have reviewed the clinical consequences of primary and secondary CoQ10 deficiencies, as well as providing some examples of the successful use of CoQ10 supplementation in the treatment of disease.
Collapse
|
15
|
Zhang L, Ashizawa T, Peng D. Primary coenzyme Q10 deficiency due to COQ8A gene mutations. Mol Genet Genomic Med 2020; 8:e1420. [PMID: 32743982 PMCID: PMC7549598 DOI: 10.1002/mgg3.1420] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Primary deficiency of coenzyme Q10 deficiency-4 (COQ10D4) is an autosomal recessive cerebellar ataxia with mitochondrial respiratory chain disfunction. The main clinical manifestation involves early-onset exercise intolerance, progressive cerebellar ataxia, and movement disorders. COQ8A gene mutations are responsible for this disease. Here, we provide clinical, laboratory, and genetic findings of a patient with cerebellar ataxia caused by compound heterozygous mutations in COQ8A gene. METHODS A male patient from a non-consanguineous Chinese family underwent detailed physical and auxiliary examination. After exclusion of acquired causes of ataxia, Friedreich's Ataxia, and common types of spinocerebellar ataxia, the patient was subjected to whole exome sequencing (WES) followed by confirmation of sequence variants using Sanger sequencing. His asymptomatic parents, two brothers and one sister were genotyped for these variants. RESULTS This patient showed early-onset exercise intolerance and progressive cerebellar ataxia, wide-based gait and tremor, accompanied by symptoms of dysautonomia. His serum lactate level was elevated and plasma total Coenzyme Q10 (CoQ10) was decreased. Brain MRI showed cerebellar atrophy, and X-ray of the spine revealed thoraco-lumbar scoliosis. Compound heterozygous mutations in the COQ8A gene were identified through WES: c.1844_1845insG, p.Ser616Leufs*114 and c.902G>A, p.Arg301Gln. After treatment with ubidecarenone, 40 mg three times per day for 2 years, the symptoms dramatically improved. CONCLUSIONS We identified a patient with COQ10D4 caused by novel COQ8A mutations. Our findings widen the spectrum of COQ8A gene mutations and clinical manifestations.
Collapse
Affiliation(s)
- Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Tetsuo Ashizawa
- Houston Methodist Research Institute and Department of Neurology, Houston Methodist Neurological Institute, Houston, Texas, USA
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
16
|
Sánchez-Cuesta A, Cortés-Rodríguez AB, Navas-Enamorado I, Lekue JA, Viar T, Axpe M, Navas P, López-Lluch G. High coenzyme Q10 plasma levels improve stress and damage markers in professional soccer players during competition. INT J VITAM NUTR RES 2020; 92:192-203. [PMID: 32639220 DOI: 10.1024/0300-9831/a000659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ubiquinol, the reduced form of Coenzyme Q10 (CoQ10), is a key factor in bioenergetics and antioxidant protection. During competition, professional soccer players suffer from considerable physical stress causing high risk of muscle damage. For athletes, supplementation with several antioxidants, including CoQ10, is widely recommended to avoid oxidative stress and muscle damage. We performed an observational study of plasma parameters associated with CoQ10 levels in professional soccer players of the Spanish First League team Athletic Club de Bilbao over two consecutive seasons (n = 24-25) in order determine their relationship with damage, stress and performance during competition. We analyzed three different moments of the competition: preterm, initial phase and mid phase. Metabolites and factors related with stress (testosterone/cortisol) and muscle damage (creatine kinase) were determined. Physical activity during matches was analyzed over the 2015/16 season in those players participating in complete matches. In the mid phase of competition, CoQ10 levels were higher in 2015/16 (906.8 ± 307.9 vs. 584.3 ± 196.3 pmol/mL, p = 0.0006) High levels of CoQ10 in the hardest phase of competition were associated with a reduction in the levels of the muscle-damage marker creatine kinase (Pearsons' correlation coefficient (r) = - 0.460, p = 0.00168) and a trend for the stress marker cortisol (r = -0.252, p = 0.150). Plasma ubiquinol was also associated with better kidney function (r = -0.287, p = 0.0443 for uric acid). Furthermore, high CoQ10 levels were associated with higher muscle performance during matches. Our results suggest that high levels of plasma CoQ10 can prevent muscle damage, improve kidney function and are associated with higher performance in professional soccer players during competition.
Collapse
Affiliation(s)
- Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ana Belén Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Ignacio Navas-Enamorado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | | | | | | | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
17
|
Fernández-Del-Río L, Kelly ME, Contreras J, Bradley MC, James AM, Murphy MP, Payne GS, Clarke CF. Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. Free Radic Biol Med 2020; 154:105-118. [PMID: 32387128 PMCID: PMC7611304 DOI: 10.1016/j.freeradbiomed.2020.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is an essential player in the respiratory electron transport chain and is the only lipid-soluble antioxidant synthesized endogenously in mammalian and yeast cells. In humans, genetic mutations, pathologies, certain medical treatments, and aging, result in CoQ deficiencies, which are linked to mitochondrial, cardiovascular, and neurodegenerative diseases. The only strategy available for these patients is CoQ supplementation. CoQ supplements benefit a small subset of patients, but the poor solubility of CoQ greatly limits treatment efficacy. Consequently, the efficient delivery of CoQ to the mitochondria and restoration of respiratory function remains a major challenge. A better understanding of CoQ uptake and mitochondrial delivery is crucial to make this molecule a more efficient and effective therapeutic tool. In this study, we investigated the mechanism of CoQ uptake and distribution using the yeast Saccharomyces cerevisiae as a model organism. The addition of exogenous CoQ was tested for the ability to restore growth on non-fermentable medium in several strains that lack CoQ synthesis (coq mutants). Surprisingly, we discovered that the presence of CoQ biosynthetic intermediates impairs assimilation of CoQ into a functional respiratory chain in yeast cells. Moreover, a screen of 40 gene deletions considered to be candidates to prevent exogenous CoQ from rescuing growth of the CoQ-less coq2Δ mutant, identified six novel genes (CDC10, RTS1, RVS161, RVS167, VPS1, and NAT3) as necessary for efficient trafficking of CoQ to mitochondria. The proteins encoded by these genes represent essential steps in the pathways responsible for transport of exogenously supplied CoQ to its functional sites in the cell, and definitively associate CoQ distribution with endocytosis and intracellular vesicular trafficking pathways conserved from yeast to human cells.
Collapse
Affiliation(s)
- Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Miranda E Kelly
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Jaime Contreras
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, UK; Department of Medicine, University of Cambridge, UK
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, USA.
| |
Collapse
|
18
|
Meza-Torres C, Hernández-Camacho JD, Cortés-Rodríguez AB, Fang L, Bui Thanh T, Rodríguez-Bies E, Navas P, López-Lluch G. Resveratrol Regulates the Expression of Genes Involved in CoQ Synthesis in Liver in Mice Fed with High Fat Diet. Antioxidants (Basel) 2020; 9:antiox9050431. [PMID: 32429295 PMCID: PMC7278683 DOI: 10.3390/antiox9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (RSV) is a bioactive natural molecule that induces antioxidant activity and increases protection against oxidative damage. RSV could be used to mitigate damages associated to metabolic diseases and aging. Particularly, RSV regulates different aspects of mitochondrial metabolism. However, no information is available about the effects of RSV on Coenzyme Q (CoQ), a central component in the mitochondrial electron transport chain. Here, we report for the first time that RSV modulates COQ genes and parameters associated to metabolic syndrome in mice. Mice fed with high fat diet (HFD) presented a higher weight gain, triglycerides (TGs) and cholesterol levels while RSV reverted TGs to control level but not weight or cholesterol. HFD induced a decrease of COQs gene mRNA level, whereas RSV reversed this decrease in most of the COQs genes. However, RSV did not show effect on CoQ9, CoQ10 and total CoQ levels, neither in CoQ-dependent antioxidant enzymes. HFD influenced mitochondrial dynamics and mitophagy markers. RSV modulated the levels of PINK1 and PARKIN and their ratio, indicating modulation of mitophagy. In summary, we report that RSV influences some of the metabolic adaptations of HFD affecting mitochondrial physiology while also regulates COQs gene expression levels in a process that can be associated with mitochondrial dynamics and turnover.
Collapse
Affiliation(s)
- Catherine Meza-Torres
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Ana Belén Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Luis Fang
- Immunology and Molecular Biology Group, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Tung Bui Thanh
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
- School of Medicine and Pharmacy, Vietnam National University, Hanoi 100000, Vietnam
| | - Elisabet Rodríguez-Bies
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
- Departamento de Deporte e Informática, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
- Correspondence: ; Tel.: +34-954-9384
| |
Collapse
|
19
|
Genomic sequencing highlights the diverse molecular causes of Perrault syndrome: a peroxisomal disorder (PEX6), metabolic disorders (CLPP, GGPS1), and mtDNA maintenance/translation disorders (LARS2, TFAM). Hum Genet 2020; 139:1325-1343. [PMID: 32399598 DOI: 10.1007/s00439-020-02176-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023]
Abstract
Perrault syndrome is a rare heterogeneous condition characterised by sensorineural hearing loss and premature ovarian insufficiency. Additional neuromuscular pathology is observed in some patients. There are six genes in which variants are known to cause Perrault syndrome; however, these explain only a minority of cases. We investigated the genetic cause of Perrault syndrome in seven affected individuals from five different families, successfully identifying the cause in four patients. This included previously reported and novel causative variants in known Perrault syndrome genes, CLPP and LARS2, involved in mitochondrial proteolysis and mitochondrial translation, respectively. For the first time, we show that pathogenic variants in PEX6 can present clinically as Perrault syndrome. PEX6 encodes a peroxisomal biogenesis factor, and we demonstrate evidence of peroxisomal dysfunction in patient serum. This study consolidates the clinical overlap between Perrault syndrome and peroxisomal disorders, and highlights the need to consider ovarian function in individuals with atypical/mild peroxisomal disorders. The remaining patients had variants in candidate genes such as TFAM, involved in mtDNA transcription, replication, and packaging, and GGPS1 involved in mevalonate/coenzyme Q10 biosynthesis and whose enzymatic product is required for mouse folliculogenesis. This genomic study highlights the diverse molecular landscape of this poorly understood syndrome.
Collapse
|
20
|
Update Review about Metabolic Myopathies. Life (Basel) 2020; 10:life10040043. [PMID: 32316520 PMCID: PMC7235760 DOI: 10.3390/life10040043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this review is to summarize and discuss recent findings and new insights in the etiology and phenotype of metabolic myopathies. The review relies on a systematic literature review of recent publications. Metabolic myopathies are a heterogeneous group of disorders characterized by mostly inherited defects of enzymatic pathways involved in muscle cell metabolism. Metabolic myopathies present with either permanent (fixed) or episodic abnormalities, such as weakness, wasting, exercise-intolerance, myalgia, or an increase of muscle breakdown products (creatine-kinase, myoglobin) during exercise. Though limb and respiratory muscles are most frequently affected, facial, extra-ocular, and axial muscles may be occasionally also involved. Age at onset and prognosis vary considerably. There are multiple disease mechanisms and the pathophysiology is complex. Genes most recently related to metabolic myopathy include PGM1, GYG1, RBCK1, VMA21, MTO1, KARS, and ISCA2. The number of metabolic myopathies is steadily increasing. There is limited evidence from the literature that could guide diagnosis and treatment of metabolic myopathies. Treatment is limited to mainly non-invasive or invasive symptomatic measures. In conclusion, the field of metabolic myopathies is evolving with the more widespread availability and application of next generation sequencing technologies worldwide. This will broaden the knowledge about pathophysiology and putative therapeutic strategies for this group of neuromuscular disorders.
Collapse
|
21
|
Hargreaves IP, Mantle D. Coenzyme Q10 Supplementation in Fibrosis and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:103-112. [DOI: 10.1007/978-3-030-25650-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|