1
|
Olatunde D, Franco OC, Gaestel M, De Benedetti A. Targeting the TLK1-MK5 Axis Suppresses Prostate Cancer Metastasis. Cancers (Basel) 2025; 17:1187. [PMID: 40227796 PMCID: PMC11988051 DOI: 10.3390/cancers17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background: The spread of metastatic prostate cancer (PCa) is responsible for the majority of PCa-related deaths, yet the precise mechanisms driving this process remain unclear. We have identified a novel interaction between two distinct promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), which triggers a signaling cascade that promotes metastasis. In PCa, the TLK1-MK5 pathway may play a critical role, as androgen deprivation therapy (ADT) has been linked to increased expression of both TLK1 and MK5 in metastatic patients linked with poor survival. Objectives: In this study, we directly examined the effects of disrupting the TLK1>MK5 axis on the motility, invasiveness, and metastatic potential of PCa cells. Methods: To establish this, we used both pharmacologic and systemic approaches with genetically engineered mouse models and the use of IVIS. Results: The results of targeting the TLK1>MK5 axis support the notion that this axis is essential for the spread of metastatic cells and the development of age-related metastases.
Collapse
Affiliation(s)
- Damilola Olatunde
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| | - Omar Coronel Franco
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany;
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (D.O.); (O.C.F.)
| |
Collapse
|
2
|
Witz A, Dardare J, Betz M, Michel C, Husson M, Gilson P, Merlin JL, Harlé A. Homologous recombination deficiency (HRD) testing landscape: clinical applications and technical validation for routine diagnostics. Biomark Res 2025; 13:31. [PMID: 39985088 PMCID: PMC11846297 DOI: 10.1186/s40364-025-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
The use of poly(ADP-ribose) polymerase inhibitors (PARPi) revolutionized the treatment of BRCA-mutated cancers. Identifying patients exhibiting homologous recombination deficiency (HRD) has been proved useful to predict PARPi efficacy. However, obtaining HRD status remains an arduous task due to its evolution over the time. This causes HRD status to become obsolete when obtained from genomic scars, rendering PARPi ineffective for these patients. Only two HRD tests are currently FDA-approved, both based on genomic scars detection and BRCA mutations testing. Nevertheless, new technologies for obtaining an increasingly reliable HRD status continue to evolve. Application of these tests in clinical practice is an additional challenge due to the need for lower costs and shorter time to results delay.In this review, we describe the currently available methods for HRD testing, including the methodologies and corresponding tests for assessing HRD status, and discuss the clinical routine application of these tests and their technical validation.
Collapse
Affiliation(s)
- Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cassandra Michel
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Marie Husson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
3
|
Nie AY, Xiao ZH, Deng JL, Li N, Hao LY, Li SH, Hu XY. Bidirectional regulation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon gene pathway and its impact on hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:98556. [PMID: 39958554 PMCID: PMC11755995 DOI: 10.4251/wjgo.v17.i2.98556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths in China, and the treatment options are limited. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activates the stimulator of interferon gene (STING) signaling pathway as a crucial immune response pathway in the cytoplasm, which detects cytoplasmic DNA to regulate innate and adaptive immune responses. As a potential therapeutic target, cGAS-STING pathway markedly inhibits tumor cell proliferation and metastasis, with its activation being particularly relevant in HCC. However, prolonged pathway activation may lead to an immunosuppressive tumor microenvironment, which fostering the invasion or metastasis of liver tumor cells. AIM To investigate the dual-regulation mechanism of cGAS-STING in HCC. METHODS This review was conducted according to the PRISMA guidelines. The study conducted a comprehensive search for articles related to HCC on PubMed and Web of Science databases. Through rigorous screening and meticulous analysis of the retrieved literature, the research aimed to summarize and elucidate the impact of the cGAS-STING pathway on HCC tumors. RESULTS All authors collaboratively selected studies for inclusion, extracted data, and the initial search of online databases yielded 1445 studies. After removing duplicates, the remaining 964 records were screened. Ultimately, 55 articles met the inclusion criteria and were included in this review. CONCLUSION Acute inflammation can have a few inhibitory effects on cancer, while chronic inflammation generally promotes its progression. Extended cGAS-STING pathway activation will result in a suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Ai-Yu Nie
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Zhong-Hui Xiao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Jia-Li Deng
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Na Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Li-Yuan Hao
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Sheng-Hao Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Xiao-Yu Hu
- Department of Infection, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
4
|
Song J, Ye X, Peng Q, Ying X, Xiao H. Circulating Tumor cells and multiple indicators combined to identify the risk of poorer prognosis in patients with resected non-small cell lung cancer. BMC Cancer 2024; 24:1491. [PMID: 39627742 PMCID: PMC11616275 DOI: 10.1186/s12885-024-13245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Surgical resection is an important treatment option for patients with non-small cell lung cancer (NSCLC). However, recurrence and survival rates remain a cause of concern. To further improve prognosis, more studies have focused on liquid biopsy, which has significant value as a prognostic factor for defining the risk stratification of postoperative NSCLC patients. This study aimed to identify circulating tumor cells (CTCs) as biomarkers that indicate a poor prognosis, combined with multiple indicators to determine prognostic risks in advance and develop individualized treatment strategies. METHODS Between November 2015 and August 2018, 65 radical resected patients with NSCLC were analyzed. Preoperative CTCs were collected, and follow-up lasted until August 2023. Overall survival (OS) and disease-free survival (DFS) were the primary outcomes. RESULTS With an 11 CTC unit threshold, the high preoperative CTC level group had worse OS and DFS than the low-level group, suggesting that preoperative CTC levels have prognostic value. Time-dependent receiver operating characteristic (ROC) curves also showed satisfactory predictive efficiency of CTCs. Univariate analysis revealed that preoperative CTC levels were significantly associated with increasing risks for OS and DFS. Moreover, we combined CTCs and multiple indicators to provide a reference for a group at high risk of adverse outcomes. CONCLUSIONS CTCs serve as feasible biomarkers for predicting postoperative prognosis in NSCLC patients. The combination of hematological, radiological, and pathological features could be valuable tools to guide postoperative management and treatment decisions in these patients. A multimodal prognostic approach is important for the clinical evaluation of lung cancer.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qianqian Peng
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinnan Ying
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Rendek T, Pos O, Duranova T, Saade R, Budis J, Repiska V, Szemes T. Current Challenges of Methylation-Based Liquid Biopsies in Cancer Diagnostics. Cancers (Basel) 2024; 16:2001. [PMID: 38893121 PMCID: PMC11171112 DOI: 10.3390/cancers16112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
In current clinical practice, effective cancer testing and screening paradigms are limited to specific types of cancer, exhibiting varying efficiency, acceptance, and adherence. Cell-free DNA (cfDNA) methylation profiling holds promise in providing information about the presence of malignity regardless of its type and location while leveraging blood-based liquid biopsies as a method to obtain analytical samples. However, technical difficulties, costs and challenges resulting from biological variations, tumor heterogeneity, and exogenous factors persist. This method exploits the mechanisms behind cfDNA release but faces issues like fragmentation, low concentrations, and high background noise. This review explores cfDNA methylation's origins, means of detection, and profiling for cancer diagnostics. The critical evaluation of currently available multi-cancer early detection methods (MCEDs) as well as tests targeting single genes, emphasizing their potential and limits to refine strategies for early cancer detection, are explained. The current methodology limitations, workflows, comparisons of clinically approved liquid biopsy-based methylation tests for cancer, their utilization in companion diagnostics as well as the biological limitations of the epigenetics approach are discussed, aiming to help healthcare providers as well as researchers to orient themselves in this increasingly complex and evolving field of diagnostics.
Collapse
Affiliation(s)
- Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Ondrej Pos
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| | | | - Rami Saade
- 2nd Department of Gynaecology and Obstetrics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Jaroslav Budis
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Tomas Szemes
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| |
Collapse
|
6
|
De Mario A, Trevellin E, Piazza I, Vindigni V, Foletto M, Rizzuto R, Vettor R, Mammucari C. Mitochondrial Ca 2+ signaling is a hallmark of specific adipose tissue-cancer crosstalk. Sci Rep 2024; 14:8469. [PMID: 38605098 PMCID: PMC11009327 DOI: 10.1038/s41598-024-55650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Elisabetta Trevellin
- Internal Medicine Unit, Department of Medicine, Padua University Hospital, via Giustiniani 2, 35128, Padua, Italy
| | - Ilaria Piazza
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Vincenzo Vindigni
- Clinic of Plastic and Reconstructive Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Mirto Foletto
- Bariatric Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy
| | - Roberto Vettor
- Internal Medicine Unit, Department of Medicine, Padua University Hospital, via Giustiniani 2, 35128, Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
7
|
Abbasi AB, Wu V, Lang JE, Esserman LJ. Precision Oncology in Breast Cancer Surgery. Surg Oncol Clin N Am 2024; 33:293-310. [PMID: 38401911 DOI: 10.1016/j.soc.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Outcomes for patients with breast cancer have improved over time due to increased screening and the availability of more effective therapies. It is important to recognize that breast cancer is a heterogeneous disease that requires treatment based on molecular characteristics. Early endpoints such as pathologic complete response correlate with event-free survival, allowing the opportunity to consider de-escalation of certain cancer treatments to avoid overtreatment. This article discusses clinical trials of tailoring treatment (eg, I-SPY2) and screening (eg, WISDOM) to individual patients based on their unique risk features.
Collapse
Affiliation(s)
- Ali Benjamin Abbasi
- Department of Surgery, San Francisco Breast Care Center, University of California, Box 1710, UCSF, San Francisco, CA 94143, USA
| | - Vincent Wu
- Department of Surgery, Cleveland Clinic Breast Services, 9500 Euclid Avenue, A80, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie E Lang
- Department of Surgery, Cleveland Clinic Breast Services, 9500 Euclid Avenue, A80, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Laura J Esserman
- Department of Surgery, San Francisco Breast Care Center, University of California, Box 1710, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Bamodu OA, Chung CC, Pisanic TR. Harnessing liquid biopsies: Exosomes and ctDNA as minimally invasive biomarkers for precision cancer medicine. THE JOURNAL OF LIQUID BIOPSY 2023; 2:100126. [PMID: 40028482 PMCID: PMC11863985 DOI: 10.1016/j.jlb.2023.100126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 03/05/2025]
Abstract
Liquid biopsies have emerged as groundbreaking tools for minimally invasive monitoring of cancer, encompassing the analysis of Cell-Free DNA (cfDNA), circulating tumor DNA (ctDNA) and exosomes. This paradigm shift offers an emerging approach for understanding tumor dynamics, treatment responses, and disease progression. Leveraging advancements in molecular biology and technology, liquid biopsies enable clinicians to gain intricate insights from peripheral blood, thereby transforming the landscape of cancer care. This review describes the clinical impact, technological innovations, and recent evidence surrounding the integration of ctDNA and exosome analysis in cancer monitoring. Through early detection, real-time treatment response assessment, and the tracking of minimal residual disease, liquid biopsies have redefined the standards of precision oncology. Key advancements in ctDNA analysis, such as high-throughput sequencing and digital PCR, empower the detection of actionable mutations with high sensitivity. Concurrently, the characterization of exosomal cargo, facilitated by next-generation sequencing and mass spectrometry, unveils the molecular nuances of tumors. Recent studies underscore the utility of these approaches, demonstrating their efficacy in predicting relapse, guiding therapeutic decisions, and ultimately improving patient outcomes. As the field continues to evolve, liquid biopsies hold promise not only as diagnostic tools but also as agents of personalized medicine, enabling precise navigation of the intricate landscape of cancer with minimally invasiveness.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Directorate of Postgraduate Studies, School of Medicine, Muhimbili University of Health and Allied Sciences, Ilala District, Dar es Salaam, Tanzania
- Ocean Road Cancer Institute, Ilala District, Dar es Salaam, Tanzania
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Oncology - Cancer Genetics and Epigenetics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
9
|
Ranghiero A, Frascarelli C, Cursano G, Pescia C, Ivanova M, Vacirca D, Rappa A, Taormina SV, Barberis M, Fusco N, Rocco EG, Venetis K. Circulating tumour DNA testing in metastatic breast cancer: Integration with tissue testing. Cytopathology 2023; 34:519-529. [PMID: 37640801 DOI: 10.1111/cyt.13295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Breast cancer biomarker profiling predominantly relies on tissue testing (surgical and/or biopsy samples). However, the field of liquid biopsy, particularly the analysis of circulating tumour DNA (ctDNA), has witnessed remarkable progress and continues to evolve rapidly. The incorporation of ctDNA-based testing into clinical practice is creating new opportunities for patients with metastatic breast cancer (MBC). ctDNA offers advantages over conventional tissue analyses, as it reflects tumour heterogeneity and enables multiple serial biopsies in a minimally invasive manner. Thus, it serves as a valuable complement to standard tumour tissues and, in certain instances, may even present a potential alternative approach. In the context of MBC, ctDNA testing proves highly informative in the detection of disease progression, monitoring treatment response, assessing actionable biomarkers, and identifying mechanisms of resistance. Nevertheless, ctDNA does exhibit inherent limitations, including its generally low abundance, necessitating timely blood samplings and rigorous management of the pre-analytical phase. The development of highly sensitive assays and robust bioinformatic tools has paved the way for reliable ctDNA analyses. The time has now come to establish how ctDNA and tissue analyses can be effectively integrated into the diagnostic workflow of MBC to provide patients with the most comprehensive and accurate profiling. In this manuscript, we comprehensively analyse the current methodologies employed in ctDNA analysis and explore the potential benefits arising from the integration of tissue and ctDNA testing for patients diagnosed with MBC.
Collapse
Affiliation(s)
- Alberto Ranghiero
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo Pescia
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- School of Pathology, University of Milan, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Davide Vacirca
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandra Rappa
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elena Guerini Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
10
|
Botezatu IV, Kondratova VN, Stroganova AM, Dranko SL, Lichtenstein AV. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clin Chim Acta 2023; 551:117591. [PMID: 37832390 DOI: 10.1016/j.cca.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The generally accepted method of quantifying hypermethylated DNA by qPCR using methylation-specific primers has the risk of underestimating DNA methylation and requires data normalization. This makes the analysis complicated and less reliable. METHODS The end-point PCR method, called qDMA-HP (for quantitative DNA Melting Analysis with hybridization probes), which excludes the normalization procedure, is multiplexed and quantitative, has been proposed. qDMA-HP is characterized by the following features: (i) asymmetric PCR with methylation-independent primers; (ii) fluorescent dual-labeled, self-quenched probes (commonly known as TaqMan probes) covering several interrogated CpGs; (iii) post-PCR melting analysis of amplicon/probe hybrids; (iv) quantitation of unmethylated and methylated DNA alleles by measuring the areas under the corresponding melt peaks. RESULTS qDMA-HP was tested in liquid biopsy of colorectal cancer by evaluating SEPT9 and HIST1H4F methylations simultaneously in the single-tube reaction. Differences in the methylation levels in healthy donors versus cancer patients were statistically significant (p < 0.0001), AUCROC values were 0.795-0.921 for various marker combinations. CONCLUSIONS This proof-of-concept study shows that qDMA-HP is a simple, normalization-independent, quantitative, multiplex and "closed tube" method easily adapted to clinical settings. It is demonstrated, for the first time, that HIST1H4F is a perspective marker for liquid biopsy of colorectal cancer.
Collapse
Affiliation(s)
- Irina V Botezatu
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Valentina N Kondratova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anna M Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Svetlana L Dranko
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anatoly V Lichtenstein
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia.
| |
Collapse
|
11
|
Batool SM, Hsia T, Beecroft A, Lewis B, Ekanayake E, Rosenfeld Y, Escobedo AK, Gamblin AS, Rawal S, Cote RJ, Watson M, Wong DTW, Patel AA, Skog J, Papadopoulos N, Bettegowda C, Castro CM, Lee H, Srivastava S, Carter BS, Balaj L. Extrinsic and intrinsic preanalytical variables affecting liquid biopsy in cancer. Cell Rep Med 2023; 4:101196. [PMID: 37725979 PMCID: PMC10591035 DOI: 10.1016/j.xcrm.2023.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/01/2022] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Liquid biopsy, through isolation and analysis of disease-specific analytes, has evolved as a promising tool for safe and minimally invasive diagnosis and monitoring of tumors. It also has tremendous utility as a companion diagnostic allowing detection of biomarkers in a range of cancers (lung, breast, colon, ovarian, brain). However, clinical implementation and validation remains a challenge. Among other stages of development, preanalytical variables are critical in influencing the downstream cellular and molecular analysis of different analytes. Although considerable progress has been made to address these challenges, a comprehensive assessment of the impact on diagnostic parameters and consensus on standardized and optimized protocols is still lacking. Here, we summarize and critically evaluate key variables in the preanalytical stage, including study population selection, choice of biofluid, sample handling and collection, processing, and storage. There is an unmet need to develop and implement comprehensive preanalytical guidelines on the optimal practices and methodologies.
Collapse
Affiliation(s)
| | - Tiffaney Hsia
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Beecroft
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Lewis
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emil Ekanayake
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulia Rosenfeld
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana K Escobedo
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Austin S Gamblin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Siddarth Rawal
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Richard J Cote
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - David T W Wong
- University of California Los Angeles, Los Angeles, CA, USA
| | | | - Johan Skog
- Exosome Diagnostics, Waltham, MA 02451, USA
| | | | | | - Cesar M Castro
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hakho Lee
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Bob S Carter
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Mugoni V, Ciani Y, Quaini O, Tomasini S, Notarangelo M, Vannuccini F, Marinelli A, Leonardi E, Pontalti S, Martinelli A, Rossetto D, Pesce I, Mansy SS, Barbareschi M, Ferro A, Caffo O, Attard G, Di Vizio D, D'Agostino VG, Nardella C, Demichelis F. Integrating extracellular vesicle and circulating cell-free DNA analysis using a single plasma aliquot improves the detection of HER2 positivity in breast cancer patients. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e108. [PMID: 38046436 PMCID: PMC10688391 DOI: 10.1002/jex2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 12/05/2023]
Abstract
Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (One Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n = 64 healthy donors (HD) and non-metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports ONCE as a valuable tool for multi-analytes liquid biopsies' clinical implementation.
Collapse
Affiliation(s)
- Vera Mugoni
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Yari Ciani
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Orsetta Quaini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Simone Tomasini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Federico Vannuccini
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Alessia Marinelli
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Elena Leonardi
- Unit of Surgical Pathology, Santa Chiara Hospital, APSSTrentoItaly
| | - Stefano Pontalti
- Department of Medical OncologySanta Chiara Hospital, APSSTrentoItaly
| | - Angela Martinelli
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Isabella Pesce
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Sheref S. Mansy
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | | | - Antonella Ferro
- Department of Medical OncologySanta Chiara Hospital, APSSTrentoItaly
| | - Orazio Caffo
- Department of Medical OncologySanta Chiara Hospital, APSSTrentoItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | - Caterina Nardella
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative BiologyUniversity of TrentoTrentoItaly
| |
Collapse
|
13
|
Orrapin S, Thongkumkoon P, Udomruk S, Moonmuang S, Sutthitthasakul S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Deciphering the Biology of Circulating Tumor Cells through Single-Cell RNA Sequencing: Implications for Precision Medicine in Cancer. Int J Mol Sci 2023; 24:12337. [PMID: 37569711 PMCID: PMC10418766 DOI: 10.3390/ijms241512337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Circulating tumor cells (CTCs) hold unique biological characteristics that directly involve them in hematogenous dissemination. Studying CTCs systematically is technically challenging due to their extreme rarity and heterogeneity and the lack of specific markers to specify metastasis-initiating CTCs. With cutting-edge technology, single-cell RNA sequencing (scRNA-seq) provides insights into the biology of metastatic processes driven by CTCs. Transcriptomics analysis of single CTCs can decipher tumor heterogeneity and phenotypic plasticity for exploring promising novel therapeutic targets. The integrated approach provides a perspective on the mechanisms underlying tumor development and interrogates CTCs interactions with other blood cell types, particularly those of the immune system. This review aims to comprehensively describe the current study on CTC transcriptomic analysis through scRNA-seq technology. We emphasize the workflow for scRNA-seq analysis of CTCs, including enrichment, single cell isolation, and bioinformatic tools applied for this purpose. Furthermore, we elucidated the translational knowledge from the transcriptomic profile of individual CTCs and the biology of cancer metastasis for developing effective therapeutics through targeting key pathways in CTCs.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Songphon Sutthitthasakul
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (S.O.); (P.T.); (S.U.); (S.M.); (S.S.); (P.Y.); (D.P.)
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Ying M, Mao J, Sheng L, Wu H, Bai G, Zhong Z, Pan Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. J Pers Med 2023; 13:jpm13050705. [PMID: 37240875 DOI: 10.3390/jpm13050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer (PCa) causes deaths worldwide, ranking second after lung cancer. Bone metastasis (BM) frequently results from advanced PCa, affecting approximately 90% of patients, and it also often results in severe skeletal-related events. Traditional diagnostic methods for bone metastases, such as tissue biopsies and imaging, have substantial drawbacks. This article summarizes the significance of biomarkers in PCa accompanied with BM, including (1) bone formation markers like osteopontin (OPN), pro-collagen type I C-terminal pro-peptide (PICP), osteoprotegerin (OPG), pro-collagen type I N-terminal pro-peptide (PINP), alkaline phosphatase (ALP), and osteocalcin (OC); (2) bone resorption markers, including C-telopeptide of type I collagen (CTx), N-telopeptide of type I collagen (NTx), bone sialoprotein (BSP), tartrate-resistant acid phosphatase (TRACP), deoxypyridinoline (D-PYD), pyridoxine (PYD), and C-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP); (3) prostate-specific antigen (PSA); (4) neuroendocrine markers, such as chromogranin A (CgA), neuron-specific enolase (NSE), and pro-gastrin releasing peptide (ProGRP); (5) liquid biopsy markers, such as circulating tumor cells (CTCs), microRNA (miRNA), circulating tumor DNA (ctDNA), and cell-free DNA (cfDNA) and exosomes. In summary, some of these markers are already in widespread clinical use, while others still require further laboratory or clinical studies to validate their value for clinical application.
Collapse
Affiliation(s)
- Mingshuai Ying
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Jianshui Mao
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lingchao Sheng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Hongwei Wu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Guangchao Bai
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhuolin Zhong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhijun Pan
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
15
|
Saproo S, Sarkar SS, Gautam V, Konyak CW, Dass G, Karmakar A, Sharma M, Ahuja G, Gupta A, Tayal J, Mehta A, Naidu S. Salivary protein kinase C alpha and novel microRNAs as diagnostic and therapeutic resistance markers for oral squamous cell carcinoma in Indian cohorts. Front Mol Biosci 2023; 9:1106963. [PMID: 36703917 PMCID: PMC9871261 DOI: 10.3389/fmolb.2022.1106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the second leading cause of cancer-related morbidity and mortality in India. Tobacco, alcohol, poor oral hygiene, and socio-economic factors remain causative for this high prevalence. Identification of non-invasive diagnostic markers tailored for Indian population can facilitate mass screening to reduce overall disease burden. Saliva offers non-invasive sampling and hosts a plethora of markers for OSCC diagnosis. Here, to capture the OSCC-specific salivary RNA markers suitable for Indian population, we performed RNA-sequencing of saliva from OSCC patients (n = 9) and normal controls (n = 5). Differential gene expression analysis detected an array of salivary RNAs including mRNAs, long non-coding RNAs, transfer-RNAs, and microRNAs specific to OSCC. Computational analysis and functional predictions identified protein kinase c alpha (PRKCA), miR-6087, miR-449b-5p, miR-3656, miR-326, miR-146b-5p, and miR-497-5p as potential salivary indicators of OSCC. Notably, higher expression of PRKCA, miR-6087 and miR-449b-5p were found to be associated with therapeutic resistance and poor survival, indicating their prognostic potential. In addition, sequencing reads that did not map to the human genome, showed alignments with microbial reference genomes. Metagenomic and statistical analysis of these microbial reads revealed a remarkable microbial dysbiosis between OSCC patients and normal controls. Moreover, the differentially abundant microbial taxa showed a significant association with tumor promoting pathways including inflammation and oxidative stress. Summarily, we provide an integrated landscape of OSCC-specific salivary RNAs relevant to Indian population which can be instrumental in devising non-invasive diagnostics for OSCC.
Collapse
Affiliation(s)
- Sheetanshu Saproo
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shashanka S. Sarkar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Vishakha Gautam
- Department of Computational Biology, Indraprastha Institute of Information Technology- Delhi (IIIT-Delhi), New Delhi, India
| | - Chingmei W. Konyak
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Gouri Dass
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Arpita Karmakar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Mansi Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology- Delhi (IIIT-Delhi), New Delhi, India
| | - Anand Gupta
- Department of Dentistry, Government Medical College and Hospital, Chandigarh, India
| | - Juhi Tayal
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Anurag Mehta
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India,*Correspondence: Srivatsava Naidu,
| |
Collapse
|
16
|
Exploring Metabolic Signatures of Ex Vivo Tumor Tissue Cultures for Prediction of Chemosensitivity in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14184460. [PMID: 36139619 PMCID: PMC9496731 DOI: 10.3390/cancers14184460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Women diagnosed with ovarian cancer have 5-year survival rates below 45%. Prediction of patient’s outcome and the onset of drug resistance are still major challenges. The patient’s drug response is influenced by the environment that surrounds the tumor cells. We previously showed that patient-derived tumor tissue can be kept in the lab, alive and retaining aspects of that environment. In this study, we exposed tumor tissue derived from ovarian cancer patients to the chemotherapy patients receive and identified metabolites released by the tumor tissue after treatment (metabolic footprint). Using machine learning, we uncovered metabolic signatures that discriminate tumor tissues with higher vs. lower drug sensitivity. We propose potential biomarkers involved in the production of specific building blocks of cells and energy generation processes. Overall, we established a platform to explore metabolic features of the complex environment of each patient’s tumor that can underpin the discovery of biomarkers of drug response. Abstract Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.
Collapse
|
17
|
Sun Z, Zhou Q, Yang Y, Li L, Yu M, Li H, Li A, Wang X, Jiang Y. Identification and ultrasensitive photoelectrochemical detection of LncNR_040117: a biomarker of recurrent miscarriage and antiphospholipid antibody syndrome in platelet-derived microparticles. J Nanobiotechnology 2022; 20:396. [PMID: 36045427 PMCID: PMC9429728 DOI: 10.1186/s12951-022-01608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/22/2022] [Indexed: 09/04/2024] Open
Abstract
The abnormal expression of long non-coding RNAs (LncRNAs) in platelet-derived microparticles (PMPs) is closely related to immune disorders and may lead to antiphospholipid antibody syndrome and recurrent miscarriage. To understand the association between the LncRNAs in PMPs and RM/APS, the differences in the expression of LncRNAs in RM/APS patients and healthy controls were analyzed. Microarray analysis and RT-qPCR detection proved that RM/APS patient exhibited high levels of LncNR_040117 expression. The lentiviral silent expression transfection of HTR-8/SVneo cells indicated that LncNR_040117 downregulation decreased the activity of HTR-8/SVneo cells and inhibited the MAPK signaling pathway, further confirming the biomarker proficiency of LncNR_040117 for RM/APS. After that, we proposed a β-In2S3@g-C3N4 nanoheterojunction-based photoelectrochemical (PEC) biosensor to achieve the ultrasensitive detection of LncNR_040117. The nanoheterojunction aids in the effective separation of photogenerated carriers and significantly improve the photocurrent response of the biosensor. The conjugation of LncNR_040117 onto the PEC biosensing platform increased the steric hindrance between electrolyte and electrode, subsequently decreasing the photocurrent signal. The PEC biosensor showed a wide detection range of 0.1-106 fM and a low limit of detection of 0.025 fM. For clinical sample testing, the results of the PEC and RT-qPCR were highly consistent. Overall, LncNR_040117 in PMPs was identified as an effective biomarker for RM/APS and could be accurately detected by the proposed PEC biosensor, which is expected to provide a reliable diagnostic platform for RM/APS.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Qian Zhou
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, 250014, China
| | - Yufei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, 250014, China
| | - Mengru Yu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Aihua Li
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, China.
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, 250014, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.
| |
Collapse
|
18
|
Bera A, Russ E, Karaian J, Landa A, Radhakrishnan S, Subramanian M, Hueman M, Pollard HB, Hu H, Shriver CD, Srivastava M. Circulating Cell-free DNA in Serum as a Marker for the Early Detection of Tumor Recurrence in Breast Cancer Patients. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:285-292. [PMID: 35530653 PMCID: PMC9066529 DOI: 10.21873/cdp.10106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Circulating cell-free DNA (cfDNA) isolated from serum by noninvasive procedures can serve as a potential biomarker for the early detection of many cancers. The aim of this study was to implement a simple, yet effective quantitative method for measuring the cfDNA in serum and to investigate the relationship between cfDNA and the occurrence of recurrence in breast cancer (BrCa) patients. PATIENTS AND METHODS A total of 240 cases were selected, which comprised different subtypes of BrCa patients and control individuals. We selected 20 serum samples from patients which showed recurrence after 4-7 years of disease-free survival. SYBR green was used as a reporter molecule to estimate the amount of cfDNA in these serum samples. RESULTS A global Wilcoxon analysis was performed to compare the cfDNA abundance between non-recurrent and recurrent patients. The amount of cfDNA was higher in recurrent patients (recurrent vs. non-recurrent ratio=1.3; p=0.03; AUC=0.76) compared to non-recurrent patients. The data between normal/healthy controls and non-recurrent patients indicated no significant differences (n=20 in each group, healthy to non-recurrent ratio=1.03; p=0.20; AUC=0.61). CONCLUSION We implemented a straightforward one-step technique to measure the amount of cfDNA in serum, which can translate into a clinical diagnostic tool in the near future. The high levels of cfDNA in the serum of recurrent BrCa patients compared to non-recurrent BrCa patients indicates a possible uncovered role for circulating genetic information, which either contributes to the cancer recurrence phenomenon or at the very least, serves as an identifier for the potential of recurrence.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Eric Russ
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - John Karaian
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Adam Landa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Surya Radhakrishnan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Madhan Subramanian
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Matthew Hueman
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, Bethesda, MD, U.S.A
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine, Windber, PA, U.S.A
| | - Craig D Shriver
- Murtha Cancer Center, Uniformed Services University/Walter Reed National Military Medical Center, Bethesda, MD, U.S.A
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, U.S.A
| |
Collapse
|
19
|
|
20
|
Purification and Phosphoproteomic Analysis of Plasma-Derived Extracellular Vesicles. Methods Mol Biol 2022; 2504:147-156. [PMID: 35467285 PMCID: PMC9437911 DOI: 10.1007/978-1-0716-2341-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A successful phosphoproteomics analysis of extracellular vesicles (EVs) requires a unique approach, fine-tuned to address the challenges that have plagued plasma-based biomarker discovery. Here, I detail a procedure, which combines EVtrap-based high-recovery EV isolation, phase-transfer surfactant method for protein extraction, and PolyMAC-based enrichment of phosphopeptides. The combination of these methods provides a highly effective strategy for EV-based phosphoproteome analysis and leads to the discovery of novel phospho-markers previously undetectable.
Collapse
|
21
|
Du Y, Lai Y, Liu JY, Diao J. Epigenetic Quantification of DNA 5-Hydroxymethylcytosine Using DNA Hybridization-Based Single-Molecule Immunofluorescent Imaging. SMALL METHODS 2021; 5:e2100061. [PMID: 34928080 DOI: 10.1002/smtd.202100061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
5-Hydroxymethylcytosine (5hmC) is a deoxyribonucleic acid (DNA) epigenetic modification that has an important function in embryonic development and human diseases. However, the numerous methods that have been developed to detect and quantify 5hmC, require large amounts of DNA sample to be modified via chemical reactions, which considerably limits their application with cell-free DNA (cfDNA). Meanwhile, other antibody-based methods of detecting 5hmC do not offer information about the DNA sequence. Here, in this article DNA hybridization-based single-molecule immunofluorescent imaging is presented, an ultrasensitive method of detecting 5hmC modification in DNA. Via using the probe DNA to capture the DNA fragment of interest and the 5hmC antibody to detect the 5hmC modification in DNA, the fluorescent response signal of the 5hmC modification from the secondary antibody at the single-molecule level is successfully detected. Using the method, one could determine the quantity of 5hmC in the gene of interest within 6 h. In addition, it requires only 3 pg of the DNA sample and minimal experience and training for operation and analysis.
Collapse
Affiliation(s)
- Yang Du
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Lai
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
22
|
Shandilya R, Ranjan S, Khare S, Bhargava A, Goryacheva IY, Mishra PK. Point-of-care diagnostics approaches for detection of lung cancer-associated circulating miRNAs. Drug Discov Today 2021; 26:1501-1509. [PMID: 33647439 DOI: 10.1016/j.drudis.2021.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Circulating cell-free miRNAs (ccf-miRs) have gained significant interest as biomarkers for lung cancer (LC) diagnosis. However, the clinical application of ccf-miRs is mainly limited by time, cost, and expertise-related problems of existing detection strategies. Recently, the development of different point-of-care (POC) approaches offers useful on-site platforms, because these technologies have important features such as portability, rapid turnaround time, minimal sample requirement, and cost-effectiveness. In this review, we discuss different POC approaches for detecting ccf-miRs and highlight the utility of incorporating nanomaterials for enhanced biorecognition and signal transduction, further improving their diagnostic applicability in LC settings.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Khare
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Institute of Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
23
|
Electrochemical Detection and Point-of-Care Testing for Circulating Tumor Cells: Current Techniques and Future Potentials. SENSORS 2020; 20:s20216073. [PMID: 33114569 PMCID: PMC7663783 DOI: 10.3390/s20216073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) are tumor cells that escaped from the primary tumor or the metastasis into the blood and they play a major role in the initiation of metastasis and tumor recurrence. Thus, it is widely accepted that CTC is the main target of liquid biopsy. In the past few decades, the separation of CTC based on the electrochemical method has attracted widespread attention due to its convenience, rapidness, low cost, high sensitivity, and no need for complex instruments and equipment. At present, CTC detection is not widely used in the clinic due to various reasons. Point-of-care CTC detection provides us with a possibility, which is sensitive, fast, cheap, and easy to operate. More importantly, the testing instrument is small and portable, and the testing does not require specialized laboratories and specialized clinical examiners. In this review, we summarized the latest developments in the electrochemical-based CTC detection and point-of-care CTC detection, and discussed the challenges and possible trends.
Collapse
|
24
|
Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: A broad overview. Crit Rev Oncol Hematol 2020; 155:103109. [PMID: 33049662 DOI: 10.1016/j.critrevonc.2020.103109] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor DNA (ctDNA) in fluids has gained attention because ctDNA seems to identify tumor-specific abnormalities, which could be used for diagnosis, follow-up of treatment, and prognosis: the so-called liquid biopsy. Liquid biopsy is a minimally invasive approach and presents the sum of ctDNA from primary and secondary tumor sites. It has been possible not only to quantify the amount of ctDNA but also to identify (epi)genetic changes. Specific mutations in genes have been identified in the plasma of patients with several types of cancer, which highlights ctDNA as a possible cancer biomarker. However, achieving detectable concentrations of ctDNA in body fluids is not an easy task. ctDNA fragments present a short half-life, and there are no cut-off values to discriminate high and low ctDNA concentrations. Here, we discuss the use of ctDNA as a cancer biomarker, the main methodologies, the inherent difficulties, and the clinical predictive value of ctDNA.
Collapse
Affiliation(s)
- Luciana Santos Pessoa
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil; Center for Experimental Surgery, Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
Iliuk A, Wu X, Li L, Sun J, Hadisurya M, Boris RS, Tao WA. Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification. J Proteome Res 2020; 19:2563-2574. [PMID: 32396726 DOI: 10.1021/acs.jproteome.0c00151] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The invasive nature and the pain caused to patients inhibit the routine use of tissue biopsy-based procedures for cancer diagnosis and surveillance. The analysis of extracellular vesicles (EVs) from biofluids has recently gained significant traction in the liquid biopsy field. EVs offer an essential "snapshot" of their precursor cells in real time and contain an information-rich collection of nucleic acids, proteins, lipids, and so on. The analysis of protein phosphorylation, as a direct marker of cellular signaling and disease progression could be an important stepping stone to successful liquid biopsy applications. Here we introduce a rapid EV isolation method based on chemical affinity called EVtrap (extracellular vesicle total recovery and purification) for the EV phosphoproteomics analysis of human plasma. By incorporating EVtrap with high-performance mass spectrometry (MS), we were able to identify over 16 000 unique peptides representing 2238 unique EV proteins from just 5 μL of plasma sample, including most known EV markers, with substantially higher recovery levels compared with ultracentrifugation. Most importantly, more than 5500 unique phosphopeptides representing almost 1600 phosphoproteins in EVs were identified using only 1 mL of plasma. Finally, we carried out a quantitative EV phosphoproteomics analysis of plasma samples from patients diagnosed with chronic kidney disease or kidney cancer, identifying dozens of phosphoproteins capable of distinguishing disease states from healthy controls. The study demonstrates the potential feasibility of our robust analytical pipeline for cancer signaling monitoring by tracking plasma EV phosphorylation.
Collapse
Affiliation(s)
- Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Jie Sun
- College of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ronald S Boris
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Tymora Analytical Operations, West Lafayette, Indiana 47906, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,College of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Öfverholm A, Einbeigi Z, Wigermo A, Holmberg E, Karsson P. Increased Overall Mortality Even after Risk Reducing Surgery for BRCA-Positive Women in Western Sweden. Genes (Basel) 2019; 10:genes10121046. [PMID: 31888263 PMCID: PMC6947302 DOI: 10.3390/genes10121046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Women with BRCA variants have a high lifetime risk of developing breast and ovarian cancer. The aim of this study was to investigate the standard incidence ratios (SIR) for breast and ovarian cancer and standard mortality ratios (SMR) in a population-based cohort of women in Western Sweden, under surveillance and after risk reducing surgery. Women who tested positive for a BRCA variant between 1995–2016 (n = 489) were prospectively registered and followed up for cancer incidence, risk reducing surgery and mortality. The Swedish Cancer Register was used to compare breast and ovarian cancer incidence and mortality with and without risk reducing surgery for women with BRCA variants in comparison to women in the general population. SIR for breast cancer under surveillance until risk-reducing mastectomy (RRM) was 14.0 (95% CI 9.42–20.7) and decreased to 1.93 (95% CI 0.48–7.7) after RRM. The SIR for ovarian cancer was 124.6 (95% CI 59.4–261.3) under surveillance until risk reducing salpingo-oophorectomy (RRSO) and decreased to 13.5 (95% CI 4.34–41.8) after RRSO. The SMR under surveillance before any risk reducing surgery was 5.56 (95% 2.09–14.8) and after both RRM and RRSO 4.32 (95% CI 1.62–11.5). Women with cancer diagnoses from the pathology report after risk reducing surgery were excluded from the analyses. Risk reducing surgery reduced the incidence of breast and ovarian cancer in women with BRCA variants. However, overall mortality was significantly increased in comparison to the women in the general population and remained elevated even after risk reducing surgery. These findings warrant further research regarding additional measures for these women.
Collapse
Affiliation(s)
- Anna Öfverholm
- Department of Oncology, Institution of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.Ö.); (Z.E.); (E.H.)
| | - Zakaria Einbeigi
- Department of Oncology, Institution of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.Ö.); (Z.E.); (E.H.)
| | | | - Erik Holmberg
- Department of Oncology, Institution of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.Ö.); (Z.E.); (E.H.)
| | - Per Karsson
- Department of Oncology, Institution of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden; (A.Ö.); (Z.E.); (E.H.)
- Correspondence:
| |
Collapse
|