1
|
Chen W, Xiao H, Lin M, Zhou J, Xuan Q, Cui X, Zhao S. Preparation and evaluation of IgY against human papillomavirus. J Virol Methods 2025; 334:115115. [PMID: 39921191 DOI: 10.1016/j.jviromet.2025.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Human papillomavirus (HPV) infection is a major global health challenge and is closely related to the occurrence of diseases such as cervical cancer. Unfortunately, effective treatments are still lacking. In view of the advantages of antibody drugs, antibody-targeted therapy may become one of the means of treatment and prevention of HPV infection. This study explores the potential of antibody-targeted therapy using immunization with HPV nine-valent vaccine in Leghorn chickens. The resulting egg yolk antibodies (IgY) was extracted from eggs using the bitter-ammonium sulfate method and confirmed through SDS-PAGE analysis. The neutralizing titer was performed by pseudovirus-neutralizing antibody experiments, which could reach 1:2000 (18.2 μg/mL). This successful preparation of IgY against HPV 6/11/16/18/31/33/45/52/58-L1 protein showed its potential as a therapeutic agent, particularly post-HPV16 infection. This work lays the groundwork for HPV-specific IgY preparation and contributes to advancing targeted therapies for cervical cancer, prompting further research in HPV-related therapeutic approaches.
Collapse
Affiliation(s)
- Weiguang Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huanxin Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiqing Zhou
- Locking Antibody (Hunan) Medical Technology Co. Ltd., Hunan 411100, PR China
| | - Qiancheng Xuan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Artyukh AA, Ivanov MK, Titov SE, Dzyubenko VV, Krasilnikov SE, Shumeikina AO, Afanasev NA, Malek AV, Glushkov SA, Agletdinov EF. Detection of cervical precancerous lesions and cancer by small-scale RT-qPCR analysis of oppositely deregulated mRNAs pairs in cytological smears. Front Oncol 2025; 14:1491737. [PMID: 39839781 PMCID: PMC11746053 DOI: 10.3389/fonc.2024.1491737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Background Cervical screening, aimed at detecting precancerous lesions and preventing cancer, is based on cytology and HPV testing. Both methods have limitations, the main ones being the variable diagnostic sensitivity of cytology and the moderate specificity of HPV testing. Various molecular biomarkers are proposed in recent years to improve cervical cancer management, including a number of mRNAs encoded by human genes involved in carcinogenesis. Many scientific papers have shown that the expression patterns of cellular mRNAs reflect the severity of the lesion, and their analysis in cervical smears may outperform HPV testing in terms of diagnostic specificity. However, such analysis has not yet been implemented in broad clinical practice. Our aim was to devise an assay detecting severe cervical lesions (≥HSIL) via analysis of cellular mRNA expression in cytological smears. Methods Through logistic regression analysis of a reverse-transcription quantitative PCR (RT-qPCR) dataset generated from analysis of six mRNAs in 167 cervical smears with various cytological diagnoses, we generated a family of linear classifiers based on paired mRNA concentration ratios. Each classifier outputs a dimensionless decision function (DF) value that increases with lesion severity. Additionally, in the same specimens, the HPV genotyping, viral load assessment, diagnosis of cervicovaginal microbiome imbalance and profiling of some relevant mRNAs and miRNAs were performed by qPCR-based methods. Results The best classifiers were obtained with pairs of mRNAs whose expression changes in opposite directions during lesion progression. With this approach based on a five-mRNA combination (CDKN2A, MAL, TMPRSS4, CRNN, and ECM1), we generated a classifier having ROC AUC 0.935, diagnostic sensitivity 89.7%, and specificity 87.6% for ≥HSIL detection. Based on this classifier, a two-tube RT-qPCR based assay was developed and it confirmed the preliminary characteristics on 120 cervical smears from the test sample. DF values weakly correlated with HPV loads and cervicovaginal microbiome imbalance, thus being independent markers of ≥HSIL risk. Conclusion Thus, we propose a high-throughput method for detecting ≥HSIL cervical lesions by RT-qPCR analysis of several cellular mRNAs. The method is suitable for the analysis of cervical cytological smears prepared by a routine method. Further clinical validation is necessary to clarify its clinical potential.
Collapse
Affiliation(s)
| | - Mikhail K. Ivanov
- AO Vector-Best, Novosibirsk, Russia
- Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergei E. Titov
- AO Vector-Best, Novosibirsk, Russia
- Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Sergey E. Krasilnikov
- Federal State Budget Scientific Institution "Federal Research Center of Fundamental and Translational Medicine", Novosibirsk, Russia
- Department of Obstetrics and Gynecology, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia O. Shumeikina
- Federal State Budget Scientific Institution "Federal Research Center of Fundamental and Translational Medicine", Novosibirsk, Russia
- Department of Obstetrics and Gynecology, Novosibirsk State University, Novosibirsk, Russia
- Institute of Oncology and Neurosurgery, E. Meshalkin National Medical Research Center, Novosibirsk, Russia
| | - Nikita A. Afanasev
- Department of Cervical Pathology, Saint-Petersburg City Clinic №17, Saint-Petersburg, Russia
| | - Anastasia V. Malek
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| | | | | |
Collapse
|
3
|
Molina MA, Leenders WPJ, Huynen MA, Melchers WJG, Andralojc KM. Temporal composition of the cervicovaginal microbiome associates with hrHPV infection outcomes in a longitudinal study. BMC Infect Dis 2024; 24:552. [PMID: 38831406 PMCID: PMC11145797 DOI: 10.1186/s12879-024-09455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Persistent infections with high-risk human papillomavirus (hrHPV) can cause cervical squamous intraepithelial lesions (SIL) that may progress to cancer. The cervicovaginal microbiome (CVM) correlates with SIL, but the temporal composition of the CVM after hrHPV infections has not been fully clarified. METHODS To determine the association between the CVM composition and infection outcome, we applied high-resolution microbiome profiling using the circular probe-based RNA sequencing technology on a longitudinal cohort of cervical smears obtained from 141 hrHPV DNA-positive women with normal cytology at first visit, of whom 51 were diagnosed by cytology with SIL six months later. RESULTS Here we show that women with a microbial community characterized by low diversity and high Lactobacillus crispatus abundance at both visits exhibit low risk to SIL development, while women with a microbial community characterized by high diversity and Lactobacillus depletion at first visit have a higher risk of developing SIL. At the level of individual species, we observed that a high abundance for Gardnerella vaginalis and Atopobium vaginae at both visits associate with SIL outcomes. These species together with Dialister micraerophilus showed a moderate discriminatory power for hrHPV infection progression. CONCLUSIONS Our results suggest that the CVM can potentially be used as a biomarker for cervical disease and SIL development after hrHPV infection diagnosis with implications on cervical cancer prevention strategies and treatment of SIL.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands.
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
4
|
Yadav G, Srinivasan G, Jain A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol Res Pract 2024; 254:155136. [PMID: 38271784 DOI: 10.1016/j.prp.2024.155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Cervical cancer poses a significant global public health issue, primarily affecting women, and stands as one of the four most prevalent cancers affecting woman globally, which includes breast cancer, colorectal cancer, lung cancer and cervical cancer. Almost every instance of cervical cancer is associated with infections caused by the human papillomavirus (HPV). Prevention of this disease hinges on screening and immunization of the patients, yet disparities in cervical cancer occurrence exist between developed and developing nations. Multiple factors contribute to cervical cancer, including sexually transmitted diseases (STDs), reproductive and hormonal influences, genetics, and host-related factors. Preventive programs, lifestyle improvements, smoking cessation, and prompt precancerous lesion treatment can reduce the occurrence of cervical cancer. The persistency and recurrence of the cases are inherited even after the innovative treatments available for cervical cancer. For patient's ineligible for curative surgery or radiotherapy, palliative chemotherapy remains the standard treatment. Novel treatment strategies are emerging to combat the limited effectiveness of chemotherapy. Nanocarriers offer the promise of concurrent chemotherapeutic drug delivery as a beacon of hope in cervical cancer research. The primary aim of this review study is to contribute to a thorough understanding of cervical cancer, fostering awareness and informed decision-making and exploring novel treatment methods such as nanocarriers for the treatment of cervical cancer. This manuscript delves into cutting-edge approaches, exploring the potential of nanocarriers and other innovative treatments. Our study underscores the critical need for global awareness, early intervention, and enhanced treatment options. Novel strategies, such as nanocarriers, offer renewed optimism in the battle against cervical cancer. This research provides compelling evidence for the investigation of these novel therapeutic approaches within the medical field. Cervical cancer remains a formidable adversary, but with ongoing advancements and unwavering commitment, we move closer to a future where it is a preventable and treatable disease, even in the most underserved regions.
Collapse
Affiliation(s)
- Gangotri Yadav
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India.
| | - Ganga Srinivasan
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| | - Ashish Jain
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| |
Collapse
|
5
|
Liu Y, Chen Y, Xiong J, Zhu P, An Y, Li S, Chen P, Li Q. Performance of DNA methylation analysis in the detection of high-grade cervical intraepithelial neoplasia or worse (CIN3+): a cross-sectional study. Infect Agent Cancer 2023; 18:77. [PMID: 38031140 PMCID: PMC10687787 DOI: 10.1186/s13027-023-00555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
It is commonly accepted that host genes show high methylation in cervical intraepithelial neoplasia 3 (CIN3) or worse (CIN3+). However, study quality varies, as does the clinical performance of markers in different populations. We aimed to validate candidate gene DNA methylation with standardized testing methods in the same batch of samples. We first compared the performance of 16 DNA methylation markers for detecting CIN3+ in the 82-sample training set, including 24 subjects with ≤ CIN1, 10 subjects with CIN2, 23 subjects with CIN3, and 25 subjects with cervical cancer (CC). Then five methylation markers were selected and subsequently validated among an independent set of 74 subjects, including 47 subjects with ≤ CIN1, 13 subjects with CIN2, 6 subjects with CIN3, and 8 subjects with CC. The results in the validation set revealed that methylation analysis of the SOX1 (SOX1m) showed a superior level of clinical performance (AUC = 0.879; sensitivity = 85.7%; specificity = 90.0%). SOX1m had better accuracy than cytology, with a reduced referral rate (23.0% vs. 31.4%) and a lower number of overtreatment (5 vs. 13) cases among high-risk human papillomavirus (hrHPV)-positive women. Importantly, among hrHPV-positive and SOX1m-negative women, only 1 CIN3 patient was at risk for follow-up after 1 year, whereas 1 CIN3 patient and 1 CC patient were at risk among hrHPV-positive and cytology-negative women. In this investigation, we screened 16 reported methylation markers to provide a basis for future studies related to potential precancerous lesion/cancer methylation markers in the Chinese population. The study also revealed that SOX1m has optimal CIN3+ detection performance, suggesting that it may be a promising biomarker for detecting CIN3+ in the Chinese population.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, People's Republic of China
| | - Yan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Xiangya Medical Laboratory, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jing Xiong
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, People's Republic of China
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yuhang An
- Xiangya Medical Laboratory, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Shu Li
- Xiangya Medical Laboratory, Central South University, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Puxiang Chen
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, People's Republic of China.
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
| |
Collapse
|
6
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Rao Bommi J, Kummari S, Lakavath K, Sukumaran RA, Panicker LR, Marty JL, Yugender Goud K. Recent Trends in Biosensing and Diagnostic Methods for Novel Cancer Biomarkers. BIOSENSORS 2023; 13:398. [PMID: 36979610 PMCID: PMC10046866 DOI: 10.3390/bios13030398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Cancer is one of the major public health issues in the world. It has become the second leading cause of death, with approximately 75% of cancer deaths transpiring in low- or middle-income countries. It causes a heavy global economic cost estimated at more than a trillion dollars per year. The most common cancers are breast, colon, rectum, prostate, and lung cancers. Many of these cancers can be treated effectively and cured if detected at the primary stage. Nowadays, around 50% of cancers are detected at late stages, leading to serious health complications and death. Early diagnosis of cancer diseases substantially increases the efficient treatment and high chances of survival. Biosensors are one of the potential screening methodologies useful in the early screening of cancer biomarkers. This review summarizes the recent findings about novel cancer biomarkers and their advantages over traditional biomarkers, and novel biosensing and diagnostic methods for them; thus, this review may be helpful in the early recognition and monitoring of treatment response of various human cancers.
Collapse
Affiliation(s)
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Reshmi A. Sukumaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Lakshmi R. Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| | - Jean Louis Marty
- Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Kotagiri Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
| |
Collapse
|
8
|
Smith CA, Chang MM, Kundrod KA, Novak EN, Parra SG, López L, Mavume C, Lorenzoni C, Maza M, Salcedo MP, Carns JL, Baker E, Montealegre J, Scheurer M, Castle PE, Schmeler KM, Richards-Kortum RR. A low-cost, paper-based hybrid capture assay to detect high-risk HPV DNA for cervical cancer screening in low-resource settings. LAB ON A CHIP 2023; 23:451-465. [PMID: 36562325 PMCID: PMC9890501 DOI: 10.1039/d2lc00885h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Cervical cancer is a leading cause of cancer death for women in low-resource settings. The World Health Organization recommends that cervical cancer screening programs incorporate HPV DNA testing, but available tests are expensive, require laboratory infrastructure, and cannot be performed at the point-of-care. We developed a two-dimensional paper network (2DPN), hybrid-capture, signal amplification assay and a point-of-care sample preparation protocol to detect high-risk HPV DNA from exfoliated cervical cells within an hour. The test does not require expensive equipment and has an estimated cost of <$3 per test without the need for batching. We evaluated performance of the paper HPV DNA assay with short synthetic and genomic HPV DNA targets, HPV positive and negative cellular samples, and two sets of clinical samples. The first set of clinical samples consisted of 16 biobanked, provider-collected cervical samples from a study in El Salvador previously tested with careHPV and subsequently tested in a controlled laboratory environment. The paper HPV DNA test correctly identified eight of eight HPV-negative clinical samples and seven of eight HPV-positive clinical samples. We then performed a field evaluation of the paper HPV DNA test in a hospital laboratory in Mozambique. Cellular controls generated expected results throughout field testing with fully lyophilized sample preparation and 2DPN reagents. When evaluated with 16 residual self-collected cervicovaginal samples previously tested by the GeneXpert HPV assay ("Xpert"), the accuracy of the HPV DNA paper test in the field was reduced compared to testing in the controlled laboratory environment, with positive results obtained for all eight HPV-positive samples as well as seven of eight HPV-negative samples. Further evaluation showed reduction in performance was likely due in part to increased concentration of exfoliated cells in the self-collected clinical samples from Mozambique compared with provider-collected samples from El Salvador. Finally, a formal usability assessment was conducted with users in El Salvador and Mozambique; the assay was rated as acceptable to perform after minimal training. With additional optimization for higher cell concentrations and inclusion of an internal cellular control, the paper HPV DNA assay offers promise as a low-cost, point-of-care cervical cancer screening test in low-resource settings.
Collapse
Affiliation(s)
- Chelsey A Smith
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Megan M Chang
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | | - Emilie N Novak
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Sonia G Parra
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Leticia López
- Basic Health International, San Salvador, El Salvador
| | | | - Cesaltina Lorenzoni
- Hospital Central de Maputo, Maputo, Mozambique
- Ministerio da Saude de Moçambique (MISAU), Maputo, Mozambique
| | - Mauricio Maza
- Basic Health International, San Salvador, El Salvador
| | - Mila P Salcedo
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer L Carns
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Ellen Baker
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane Montealegre
- Department of Pediatrics-Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Michael Scheurer
- Department of Pediatrics-Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Philip E Castle
- Divisions of Cancer Prevention and Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
9
|
Nassiri S, Aminimoghaddam S, Sadaghiani MR, Nikandish M, Jamshidnezhad N, Saffarieh E. Evaluation of the diagnostic accuracy of the cervical biopsy under colposcopic vision. Eur J Transl Myol 2022; 32:10670. [PMID: 36226527 PMCID: PMC9830395 DOI: 10.4081/ejtm.2022.10670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 01/13/2023] Open
Abstract
This study was conducted to evaluate the diagnostic accuracy of the cervical biopsy under colposcopic vision. This retrospective study was performed on 190 women, who were selected from a total of 412 cases referring for colposcopy in one year. All patients underwent colposcopy and loop electrosurgical excision procedure (LEEP). After the investigation of demographic characteristics and data confirmation, colposcopic characteristics were examined. Then, the diagnostic indicators and diagnostic accuracy of the cervical biopsy under colposcopic vision were determined. The mean age of patients was 35.51± 5.91 years. In smokers, the percentage of cancer and CIN3 cases was higher than in normal individuals, and this difference was statistically significant in terms of the frequency of cancerous lesions (P = 0.2). A comparison of colposcopic biopsy with LEEP has shown that the frequency of advanced cases in LEEP has been detected more, and the correlation coefficient (kappa) indicated the weak agreement between the findings of colposcopically directed biopsy (CDB) and LEEP methods. (k = 0.23). The diagnostic accuracy of the cervical biopsy under colposcopic vision for cervical cancer is effectively high. It is recommended that this procedure be performed to diagnose cancerous lesions; however, contrary to what is seen in colposcopy, malignant cases may be spreading and follow-up of patients can affect therapeutic performance.
Collapse
Affiliation(s)
- Setare Nassiri
- Endometriosis Research Center, Iran University of Medical Sciences. Tehran, Iran
| | | | - Marjan Ranjbar Sadaghiani
- Shahid AkbarAbadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Niousha Jamshidnezhad
- Shahid AkbarAbadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Saffarieh
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Science, Semnan, Iran,Abnormal Uterine Bleeding Research Center, Semnan University of Medical Science, Semnan, Iran. ORCID ID: 0000-0001-9432-7263
| |
Collapse
|
10
|
Arip M, Tan LF, Jayaraj R, Abdullah M, Rajagopal M, Selvaraja M. Exploration of biomarkers for the diagnosis, treatment and prognosis of cervical cancer: a review. Discov Oncol 2022; 13:91. [PMID: 36152065 PMCID: PMC9509511 DOI: 10.1007/s12672-022-00551-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022] Open
Abstract
As the fourth most diagnosed cancer, cervical cancer (CC) is one of the major causes of cancer-related mortality affecting females globally, particularly when diagnosed at advanced stage. Discoveries of CC biomarkers pave the road to precision medicine for better patient outcomes. High throughput omics technologies, characterized by big data production further accelerate the process. To date, various CC biomarkers have been discovered through the advancement in technologies. Despite, very few have successfully translated into clinical practice due to the paucity of validation through large scale clinical studies. While vast amounts of data are generated by the omics technologies, challenges arise in identifying the clinically relevant data for translational research as analyses of single-level omics approaches rarely provide causal relations. Integrative multi-omics approaches across different levels of cellular function enable better comprehension of the fundamental biology of CC by highlighting the interrelationships of the involved biomolecules and their function, aiding in identification of novel integrated biomarker profile for precision medicine. Establishment of a worldwide Early Detection Research Network (EDRN) system helps accelerating the pace of biomarker translation. To fill the research gap, we review the recent research progress on CC biomarker development from the application of high throughput omics technologies with sections covering genomics, transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Masita Arip
- Allergy & Immunology Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Lee Fang Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Rama Jayaraj
- Charles Darwin University, Darwin, NT, 0909, Australia
| | - Maha Abdullah
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Serdang, 43400, Serdang, Selangor, Malaysia
| | - Mogana Rajagopal
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Malarvili Selvaraja
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Nygård M, Engesæter B, Castle PE, Berland JM, Eide ML, Iversen OE, Jonassen CM, Christiansen IK, Vintermyr OK, Tropé A. Randomized Implementation of a Primary Human Papillomavirus Testing-based Cervical Cancer Screening Protocol for Women 34 to 69 Years in Norway. Cancer Epidemiol Biomarkers Prev 2022; 31:1812-1822. [PMID: 35793700 PMCID: PMC9437559 DOI: 10.1158/1055-9965.epi-22-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/30/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cervical cancer screening programs are facing a programmatic shift where screening protocol based on human papillomavirus testing (HPV-Screening protocol) is replacing the liquid-based cytology (LBC-Screening protocol). For safe technology transfer within the nationwide screening programme in Norway, HPV-Screening protocol was implemented randomized to compare the real-world effectiveness of HPV-Screening protocol and LBC-Screening protocol at the first screening round. METHODS Among 302,295 women ages 34 to 69 years scheduled to attend screening from February 2015 to June 2017, 157,447 attended. A total of 77,207 were randomly allocated to the HPV-Screening protocol and 80,240 were allocated to the LBC-Screening protocol. All women were followed up for 18 months. RESULTS The HPV-Screening protocol resulted in a relative increase of 60% in the detection of cervical intraepithelial neoplasia (CIN) grade 2 or worse [risk ratio (RR) = 1.6, 95% confidence interval (CI) = 1.5-1.7], 40% in CIN grade 3 or worse (RR = 1.4, 95% CI = 1.3-1.6), 40% in cancer (RR = 1.4, 95% CI = 1.0-2.1), and 60% in colposcopy referrals (RR = 1.6, 95% CI = 1.5-1.6) compared with LBC-Screening. The performance of both protocols was age dependent, being more effective in women ages under 50 years. CONCLUSIONS The HPV-Screening protocol was well accepted by women in Norway and detected more CIN2, CIN3, and cancers compared with the LBC-Screening protocol. IMPACT A randomized implementation of the HPV-Screening protocol with real-world assessment enabled a gradual, quality assured, and safe technology transition. HPV-based screening protocol may further be improved by using HPV genotyping and age-specific referral algorithms.
Collapse
Affiliation(s)
- Mari Nygård
- The Cancer Registry of Norway, Oslo, Norway.,Corresponding Author: Mari Nygård, Research Department, The Cancer Registry of Norway, Postbox 5313 Majorstuen, Oslo 0304, Norway. Phone: 47-9518-1886; E-mail:
| | | | - Philip E. Castle
- Division of Cancer Prevention, NCI, NIH, Rockville, Maryland.,Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | | | - Maj Liv Eide
- Trondheim University Hospital, Trondheim, Norway
| | - Ole Erik Iversen
- Institute of Clinical Science, University of Bergen, Bergen, Norway.,Haukeland University Hospital, Bergen, Norway
| | | | | | - Olav Karsten Vintermyr
- Haukeland University Hospital, Bergen, Norway.,The Gades Laboratory for Pathology, University of Bergen, Bergen, Norway
| | | |
Collapse
|
12
|
de Oliveira-Junior I, Barbin FF, Watanabe AHU, dos Reis R, da Costa Vieira RA. HPV-positive cervical squamous cell carcinoma metastasis to the breast, mimicking primary tumor. Breast Dis 2022; 41:407-411. [PMID: 36502298 PMCID: PMC9881019 DOI: 10.3233/bd-220027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Metastatic disease to the breast is a rare condition, with contralateral breast metastasis being the most common primary site. CASE PRESENTATION We present the case of a patient who underwent treatment for an HPV positive squamous cell carcinoma (SCC) of the cervix who, during follow-up, complained of a nodule in her left breast. Anatomopathological results indicating squamous carcinoma, which was not able to be differentiated from breast metaplastic carcinoma. Resection of the lesion was carried out, confirming carcinoma with squamous cell differentiation with negativity for GCDFP-15, mammaglobin, p63 and SOX10, but with positivity for p16 and for high risk HPV, confirming a single metastatic lesion of cervical carcinoma. DISCUSSION/CONCLUSION In the presence of SCC in the breast, the differential diagnosis may consider the presence of primary lesion, metaplastic carcinoma with squamous cell differentiation or metastatic disease. The use of markers such as p63, SOX10 and p16, may help for a definitive diagnosis.
Collapse
Affiliation(s)
- Idam de Oliveira-Junior
- Postgraduate Program in Tocogynecology, Medicine School - São Paulo State University (UNESP), São Paulo, SP, Brazil
- Department of Mastology and Breast Reconstruction, Barretos Cancer Hospital, Barretos, SP, Brazil
- Postgraduate Program in Oncology, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | - Ricardo dos Reis
- Postgraduate Program in Oncology, Barretos Cancer Hospital, Barretos, SP, Brazil
- Department of Oncogynecology, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - René Aloisio da Costa Vieira
- Postgraduate Program in Tocogynecology, Medicine School - São Paulo State University (UNESP), São Paulo, SP, Brazil
- Postgraduate Program in Oncology, Barretos Cancer Hospital, Barretos, SP, Brazil
- Surgery Department, Division of Mastology, Muriaé Cancer Hospital, Muriaé, MG, Brazil
| |
Collapse
|
13
|
Andralojc KM, Molina MA, Qiu M, Spruijtenburg B, Rasing M, Pater B, Huynen MA, Dutilh BE, Ederveen THA, Elmelik D, Siebers AG, Loopik D, Bekkers RLM, Leenders WPJ, Melchers WJG. Novel high-resolution targeted sequencing of the cervicovaginal microbiome. BMC Biol 2021; 19:267. [PMID: 34915863 PMCID: PMC8680041 DOI: 10.1186/s12915-021-01204-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cervicovaginal microbiome (CVM) plays a significant role in women's cervical health and disease. Microbial alterations at the species level and characteristic community state types (CST) have been associated with acquisition and persistence of high-risk human papillomavirus (hrHPV) infections that may result in progression of cervical lesions to malignancy. Current sequencing methods, especially most commonly used multiplex 16S rRNA gene sequencing, struggle to fully clarify these changes because they generally fail to provide sufficient taxonomic resolution to adequately perform species-level associative studies. To improve CVM species designation, we designed a novel sequencing tool targeting microbes at the species taxonomic rank and examined its potential for profiling the CVM. RESULTS We introduce an accessible and practical circular probe-based RNA sequencing (CiRNAseq) technology with the potential to profile and quantify the CVM. In vitro and in silico validations demonstrate that CiRNAseq can distinctively detect species in a mock mixed microbial environment, with the output data reflecting its ability to estimate microbes' abundance. Moreover, compared to 16S rRNA gene sequencing, CiRNAseq provides equivalent results but with improved sequencing sensitivity. Analyses of a cohort of cervical smears from hrHPV-negative women versus hrHPV-positive women with high-grade cervical intraepithelial neoplasia confirmed known differences in CST occurring in the CVM of women with hrHPV-induced lesions. The technique also revealed variations in microbial diversity and abundance in the CVM of hrHPV-positive women when compared to hrHPV-negative women. CONCLUSIONS CiRNAseq is a promising tool for studying the interplay between the CVM and hrHPV in cervical carcinogenesis. This technology could provide a better understanding of cervicovaginal CST and microbial species during health and disease, prompting the discovery of biomarkers, additional to hrHPV, that can help detect high-grade cervical lesions.
Collapse
Affiliation(s)
- Karolina M. Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Mariano A. Molina
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mengjie Qiu
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Bram Spruijtenburg
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Menno Rasing
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Bernard Pater
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Bas E. Dutilh
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Thomas H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Duaa Elmelik
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Albert G. Siebers
- Department of Pathology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Diede Loopik
- Department of Obstetrics and Gynecology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Ruud L. M. Bekkers
- Department of Obstetrics and Gynecology, Catharina Hospital, 5602 ZA Eindhoven, The Netherlands
- GROW, School for Oncology & Developmental Biology, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - William P. J. Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Predica Diagnostics, Toernooiveld 1, 6525 GA Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|