1
|
Şenel P, Agar S, Yurtsever M, Gölcü A. Voltammetric quantification, spectroscopic, and DFT studies on the binding of the antineoplastic drug Azacitidine with DNA. J Pharm Biomed Anal 2024; 237:115746. [PMID: 37862849 DOI: 10.1016/j.jpba.2023.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Abstract
In this study, experimental studies were carried out to explore the action mechanism of the anti-cancer drug Azacitidine on the double-stranded DNA (dsDNA). The drug binding constant (Kb) was found to be 4.13 ± 0.23 × 105 M-1 using voltammetric measurements and 1.67 ± 0.24 × 105 M-1 using the fluorescence spectroscopy. Both values are close to the values of 2.04 ± 0.30 × 105 M-1 for deoxyguanosine (dGuO) and 1.23 ± 0.30 × 105 M-1 for deoxyadenosine (dAdo). In the displacement studies, the ethidium bromide, strong DNA intercalator, was replaced by the Azacitidine, hence caused a decrease on the fluorescence emission intensity. In thermal denaturation studies, the increase of 8.60 °C in the melting temperature upon introduction of the Azacitidine into the dsDNA solution cleary indicated intercalation binding mode of the drug. The experimental and theoretical IR spectra of Azacitidine, dsDNA and their H-bonded complex were confirmed the Azacitidine's intercalation ability to induce cytotoxicity. We also developed a method for the detection of Azacitidine at low concentrations using the differential pulse voltammetry (DPV). The peak current decreases in the oxidation signals of the deoxyguanosine obtained voltammetrically upon the interaction of Azacitidine and dsDNA allowed a sensitive determination of Azacitidine in pH 4.80 acetate buffer. A linear dependence of the deoxyguanosine oxidation signals was observed within the range of 2-20 µM Azacitidine, with a limit of detection (LOD) 0.62 µM.
Collapse
Affiliation(s)
- Pelin Şenel
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Soykan Agar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| | - Ayşegül Gölcü
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.
| |
Collapse
|
2
|
Calvillo-Páez V, Plascencia-Jatomea M, Ochoa-Terán A, Del-Toro-Sánchez CL, González-Vega RI, González-Martínez SM, Ochoa Lara K. Tetrandrine Derivatives as Promising Antibacterial Agents. ACS OMEGA 2023; 8:28156-28164. [PMID: 37576675 PMCID: PMC10413380 DOI: 10.1021/acsomega.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
This work reports on the antibacterial activity of two tetrandrine derivatives, with acridine (MAcT) and anthracene (MAnT) units, against Gram-positive and Gram-negative bacteria of clinical importance by the broth microdilution method as well as their antioxidant activity against ABTS•+ and DPPH•+ radicals. Unlike natural tetrandrine, its derivatives inhibited bacterial growth, showing selectivity against Staphylococcus aureus with notable activity of MAnT (MIC = 0.035 μg/mL); this compound also has good activity against the ABTS•+ radical (IC50 = 4.59 μg/mL). Cell membrane integrity studies and reactive oxygen species (ROS) detection by fluorescent stains helped to understand possible mechanisms related to antibacterial activity, while electrophoretic mobility assays showed that the derivatives can bind to bacterial DNA plasmid. The results indicate that MAnT can induce a general state of oxidative stress in S. aureus and Escherichia coli, while MAcT induces an oxidative response in S. aureus. Complementary electrochemical studies were included.
Collapse
Affiliation(s)
- Viviana
I. Calvillo-Páez
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México, Campus Tijuana, CP 22444 Tijuana, B.C., México
| | - Maribel Plascencia-Jatomea
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Adrián Ochoa-Terán
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México, Campus Tijuana, CP 22444 Tijuana, B.C., México
| | - Carmen L. Del-Toro-Sánchez
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Ricardo I. González-Vega
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Sandra M. González-Martínez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000, Hermosillo, Sonora, México
| | - Karen Ochoa Lara
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000, Hermosillo, Sonora, México
| |
Collapse
|
3
|
Aureliano M, De Sousa-Coelho AL, Dolan CC, Roess DA, Crans DC. Biological Consequences of Vanadium Effects on Formation of Reactive Oxygen Species and Lipid Peroxidation. Int J Mol Sci 2023; 24:5382. [PMID: 36982458 PMCID: PMC10049017 DOI: 10.3390/ijms24065382] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.
Collapse
Affiliation(s)
- Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), 8005-139 Faro, Portugal
| | - Connor C. Dolan
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Cellular and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Michael S, Jeyaraman P, Marimuthu B, Rajasekar R, Thanasamy R, Kumar KA, Raman N. Influence of electron density on the biological activity of aniline substituted Schiff base: in silico, in vivo and in vitro authentication. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Wang D, Liu M, Wu Y, Weng T, Wang L, Zhang Y, Zhao Y, Han J. Idarubicin/mithramycin-acridine orange combination drugs co-loaded by DNA nanostructures: Different effects of intercalation and groove binding on drug release and cytotoxicity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
González-Martínez S, Valencia-Ochoa DP, Gálvez-Ruiz JC, Leyva-Peralta MA, Juárez-Sánchez O, Islas-Osuna MA, Calvillo-Páez VI, Höpfl H, Íñiguez-Palomares R, Rocha-Alonzo F, Ochoa Lara K. DNA-Binding Properties of Bis- N-substituted Tetrandrine Derivatives. ACS OMEGA 2022; 7:16380-16390. [PMID: 35601331 PMCID: PMC9118212 DOI: 10.1021/acsomega.2c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A series of bis-N-substituted tetrandrine derivatives carrying different aromatic substituents attached to both nitrogen atoms of the natural alkaloid were studied with double-stranded model DNAs (dsDNAs) to examine the binding properties and mechanism. Variable-temperature molecular recognition studies using UV-vis and fluorescence techniques revealed the thermodynamic parameters, ΔH, ΔS, and ΔG, showing that the tetrandrine derivatives exhibit high affinity toward dsDNA (K ≈ 105-107 M-1), particularly the bis(methyl)anthraquinone (BAqT) and bis(ethyl)indole compounds (BInT). Viscometry experiments, ethidium displacement assays, and molecular modeling studies enabled elucidation of the possible binding mode, indicating that the compounds exhibit a synergic interaction mode involving intercalation of one of the N-aryl substituents and interaction of the molecular skeleton in the major groove of the dsDNA. Cytotoxicity tests of the derivatives with tumor and nontumor cell lines demonstrated low cytotoxicity of these compounds, with the exception of the bis(methyl)pyrene (BPyrT) derivative, which is significantly more cytotoxic than the remaining derivatives, with IC50 values against the LS-180, A-549, and ARPE-19 cell lines that are similar to natural tetrandrine. Finally, complementary electrochemical characterization studies unveiled good electrochemical stability of the compounds.
Collapse
Affiliation(s)
- Sandra
Mónica González-Martínez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| | - Drochss Pettry Valencia-Ochoa
- Departamento
de Ciencias Naturales y Matemáticas, Facultad de Ingeniería
y Ciencias, Pontificia Universidad Javeriana, Calle 18 No. 118-250, CP 760031 Cali, Colombia
| | - Juan Carlos Gálvez-Ruiz
- Departamento
de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Mario Alberto Leyva-Peralta
- Departamento
de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Ave. Universidad e Irigoyen s/n, CP 83621 H. Caborca, Sonora, México
| | - Octavio Juárez-Sánchez
- Departamento
de Investigación en Física, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - María A. Islas-Osuna
- Laboratorio
de Biología Biomolecular, Centro
de Investigación en Alimentación y Desarrollo, A. C., Gustavo Enrique Astiazaran Rosas,
No. 46., CP 83304 Hermosillo, Sonora, México
| | - Viviana Isabel Calvillo-Páez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| | - Herbert Höpfl
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos, México
| | - Ramón Íñiguez-Palomares
- Departamento
de Física, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Fernando Rocha-Alonzo
- Departamento
de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Karen Ochoa Lara
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro,
CP 83000 Hermosillo, Sonora, México
| |
Collapse
|
7
|
de Almeida PSVB, de Arruda HJ, Sousa GLS, Ribeiro FV, de Azevedo-França JA, Ferreira LA, Guedes GP, Silva H, Kummerle AE, Neves AP. Cytotoxicity evaluation and DNA interaction of Ru II-bipy complexes containing coumarin-based ligands. Dalton Trans 2021; 50:14908-14919. [PMID: 34609400 DOI: 10.1039/d1dt01567b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although there are various treatment options for cancer, this disease still has caused an increasing number of deaths, demanding more efficient, selective and less harmful drugs. Several classes of ruthenium compounds have been investigated as metallodrugs for cancer, mainly after the entry of imidazolH [trans-RuCl4-(DMSO-S)(imidazole)] (NAMI-A) and indazolH [trans-RuCl4-(Indazol)2] (KP1019) in clinical trials. In this sense, RuII complexes with general formula [Ru(L1-3)(bipy)2]PF6 (1-3) (L1 = ethyl 3-(6-methyl-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L2 = ethyl 3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-3-oxopropanoate, L3 = ethyl 3-(8-methoxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate and bipy = bipyridine) have been synthesized. The crystal structure of 2 revealed that the RuII atom lies on a distorted octahedral geometry with the deprotonated ligand (L2-) coordinated through β-ketoester group oxygen atoms. In vitro cytotoxic activity of the compounds was evaluated against 4T1 (murine mammary carcinoma) and B16-F10 (murine metastatic melanoma) tumor cells, and the non-tumor cell line BHK-21 (baby hamster kidney). Coordination with RuII resulted in expressive enhancement of cytotoxic activity. The precursors were inactive below 100 μM and the final RuII complexes (1-3) showed IC50 ranging from 2.0 to 12.8 μM; 2 being the most potent compound. DNA interaction studies revealed a greater capacity of the complexes to interact with DNA than the ligands, where, 2 exhibited the highest Kb constant of 2.2 × 104 M-1. Fluorescence investigation demonstrated that 1-3 are capable of quenching the fluorescence emission of the EtdBr-DNA complex up to 40%. Molecular docking showed that the interaction of 1-3 between the DNA base pairs from the coumarin portion was with scores of 67.28, 68.62 and 64.88, respectively, and 75.45 for ellipticine, suggesting an intercalative mode of binding. Our findings show that the RuII complexes are eligible for continuing to be investigated as potential antitumor compounds.
Collapse
Affiliation(s)
- Patrícia S V B de Almeida
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Henrique Jefferson de Arruda
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Gleyton Leonel S Sousa
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Felipe Vitório Ribeiro
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | | | - Larissa A Ferreira
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Heveline Silva
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, MG, Brazil
| | - Arthur E Kummerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| | - Amanda P Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, 23890-000, Seropédica, RJ, Brazil.
| |
Collapse
|
8
|
Halevas E, Mavroidi B, Swanson CH, Smith GC, Moschona A, Hadjispyrou S, Salifoglou A, Pantazaki AA, Pelecanou M, Litsardakis G. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential. J Inorg Biochem 2019; 199:110778. [PMID: 31442839 DOI: 10.1016/j.jinorgbio.2019.110778] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 01/10/2023]
Abstract
In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity.
Collapse
Affiliation(s)
- Eleftherios Halevas
- Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Claudia H Swanson
- Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| | - Graham C Smith
- Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| | - Alexandra Moschona
- Laboratory of Organic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Spyros Hadjispyrou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece
| | - George Litsardakis
- Laboratory of Materials for Electrotechnics, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
9
|
Clayton KN, Berglund GD, Linnes JC, Kinzer-Ursem TL, Wereley ST. DNA Microviscosity Characterization with Particle Diffusometry for Downstream DNA Detection Applications. Anal Chem 2017; 89:13334-13341. [PMID: 29148723 DOI: 10.1021/acs.analchem.7b03513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Analytical characterization of DNA microviscosity provides critical biophysical insights into nuclear crowding, nucleic acid based pharmaceutical development, and nucleic acid based biosensor device design. However, most viscosity characterization methods require large sample volumes and destructive testing. In contrast, particle diffusometry permits in situ analysis of DNA microviscosity with short measurement times (8 s) using small volumes (<3 μL) which are compatible with DNA preparatory procedures. This unconventional biosensing approach involves measuring the change in sample viscosity using image processing and correlation-based algorithms. Particle diffusometry requires only a fluorescence microscope equipped with a charge-coupled device (CCD) camera and is a nondestructive measurement method. We use particle diffusometry to characterize the effect of DNA topology, length, and concentration on solution viscosity. In addition, we use particle diffusometry to detect the amplification of DNA from Staphylococcus aureus and Klebsiella pneumoniae, two pathogens commonly related to neonatal sepsis. Successful characterization of pathogen amplification with particle diffusometry provides a new opportunity to apply viscosity characterization toward downstream applications in nucleic acid based pathogen detection.
Collapse
Affiliation(s)
- Katherine N Clayton
- School of Mechanical Engineering, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47906, United States
| | - Gregory D Berglund
- School of Mechanical Engineering, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47906, United States
| | - Jacqueline C Linnes
- School of Mechanical Engineering, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47906, United States
| | - Tamara L Kinzer-Ursem
- School of Mechanical Engineering, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47906, United States
| | - Steven T Wereley
- School of Mechanical Engineering, and ‡Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana 47906, United States
| |
Collapse
|
10
|
A pyrene dihydrodioxin with pyridinium “arms”: A photochemically active DNA cleaving agent with unusual duplex stabilizing and electron trapping properties. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Patel MN, Patel SH, Chhasatia MR, Desai CR. DNA interactions and promotion in antibacterial activities of ciprofloxacin drug due to formation of mixed-ligand complexes of oxovanadium(IV). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:200-15. [PMID: 20408051 DOI: 10.1080/15257771003705625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mixed-ligand complexes of oxovanadium(IV) of the type [VOAL]*2H(2)O [where A = ciprofloxacin and L = uninegative bidentate ligands] have been synthesized and characterized using infrared spectra, electronic spectra, magnetic measurements, elemental analyses, thermal investigation, and mass spectroscopy. Here, we tried to increase an antibacterial activity of ciprofloxacin drug due to formation of mixed-ligand complexes. The complexes were found to be more potent compare to some standard drugs, ligands and metal salt against selective gram(+ve) and gram(-ve) organisms. Binding of the complexes with DNA have been investigated by spectroscopic absorption titration and viscometric techniques. The mixed-ligand complexes show good binding ability. The cleavage efficacy has been determined using gel electrophoresis method and complexes were found to be more active compared to parental ligands and metal salt.
Collapse
Affiliation(s)
- M N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.
| | | | | | | |
Collapse
|