1
|
Zheng J, Zhang W, Ni D, Zhao S, He Y, Hu J, Li L, Dang Y, Guo Z, Nie S. Design, Synthesis, and Biological Evaluation of 3-Amino-pyrazine-2-carboxamide Derivatives as Novel FGFR Inhibitors. ACS Med Chem Lett 2024; 15:2019-2031. [PMID: 39563808 PMCID: PMC11571013 DOI: 10.1021/acsmedchemlett.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
FGFR has been considered a crucial oncogenic driver and promising target for cancer therapy. Herein, we reported the design and synthesis of 3-amino-N-(3,5-dihydroxyphenyl)-6-methylpyrazine-2-carboxamide derivatives as novel FGFR inhibitors. SAR exploration led to the identification of 18i as a pan-FGFR inhibitor with favorable in vitro activity against FGFR1-4. Moreover, 18i blocked the activation of FGFR and downstream signaling pathways at the submicromolar level and exhibited potent antitumor activity in multiple cancer cell lines with FGFR abnormalities. Molecular docking was performed to investigate the possible binding modes of 18i within the binding site of FGFR2. These results suggest that compound 18i is a promising candidate for further drug discovery.
Collapse
Affiliation(s)
- Jia Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wei Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Breast and Thyroid Surgery of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dan Ni
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yi He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Linfeng Li
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Breast and Thyroid Surgery of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Breast and Thyroid Surgery of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Shenyou Nie
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention (Ministry of Education), College of Pharmacy and Department of Urology of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Abd El-Meguid EA, Mohi El-Deen EM, Moustafa GO, Awad HM, Nossier ES. Synthesis, anticancer evaluation and molecular docking of new benzothiazole scaffolds targeting FGFR-1. Bioorg Chem 2021; 119:105504. [PMID: 34836644 DOI: 10.1016/j.bioorg.2021.105504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
This work deals with the design and synthesis of a series of new substituted 2-arylbenzothiazole compounds attached to 4-oxothiazolidin-2-ylidene ring 2-12 and chain elongation with different amino acids and their corresponding ester derivatives 13-18. All prepared derivatives were screened for their in vitro cytotoxicity activities against two cancer cell lines (HepG-2 and MCF-7) in comparison with doxorubicin; in addition to their safety towards thenormal cell line. Furthermore, all compounds 2-18 were evaluated as FGFR-1 inhibitors using AZD4547 as a reference. The 4-oxothiazolidin-2-ylidene derivatives 3 and 8 exhibited the highest cytotoxic activity (IC50 HepG-2 = 2.06, 2.21 µM and IC50 MCF-7 = 0.73, 0.77 µM, respectively) through their promising FGFR-1 suppression effects (IC50 = 16.31 and 18.08 nM, respectively) in comparison to AZD4547 (IC50 = 21.45 nM). Cell cycle and apoptosis analysis indicated that compounds 3 and 8 induce pronounced increase in the cell percentages at pre-G1 and G2/M phase compared to the untreated MCF-7 cancer cells, in addition to their up regulation of caspase-3/7/9. The molecular docking simulation was created to elucidate the binding modes of benzothiazole derivatives 1-18 bearing various scaffolds within the ATP-binding pocket of FGFR-1 enzyme compared with AZD4547.
Collapse
Affiliation(s)
- Eman A Abd El-Meguid
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Eman M Mohi El-Deen
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Gaber O Moustafa
- Peptide Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Hanem M Awad
- Department of Tanning Materials and Leather Technology, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| |
Collapse
|
3
|
Wang X, Cheng Z, Dai L, Jiang T, Li P, Jia L, Jing X, An L, Liu M, Wu S, Wang Y. LncRNA PVT1 Facilitates Proliferation, Migration and Invasion of NSCLC Cells via miR-551b/FGFR1 Axis. Onco Targets Ther 2021; 14:3555-3565. [PMID: 34113122 PMCID: PMC8180410 DOI: 10.2147/ott.s273794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) plays a crucial role in non-small cell lung cancer (NSCLC). Nonetheless, regulatory effects of PVT1 on functions of NSCLC cells remain blurry. Methods Relative expression levels of PVT1, miR-551b and FGFR1 mRNA in tumor tissues and cells were examined employing quantitative real-time polymerase chain reaction (qRT-PCR); CCK-8 and BrdU assays were utilized for measuring cell viability and proliferation of H1299 and A549 cells; cell migration and invasion were detected deploying Transwell assay; dual-luciferase assay was used for the validation of binding sequence between PVT1 and miR-551b. FGFR1 expression in protein level was quantified employing Western blot. Results PVT1 was highly expressed in NSCLC tissues and cell lines, whereas miR-551b expression was down-regulated. Overexpression of PVT1 potentiated viability, proliferation, migration and invasion of NSCLC cells while miR-551b inhibited the biological behaviors mentioned above. MiR-551b was predicted and then confirmed as a direct downstream target of PVT1. Meanwhile, a negative correlation was observed between PVT1 expression and miR-551b expression in NSCLC tissues. Besides, PVT1 could increase FGFR1 expression by repressing miR-551b expression. Conclusion PVT1 promotes the proliferation, migration and invasion of NSCLC cells by indirectly mediating FGFR1 via targeting miR-551b.
Collapse
Affiliation(s)
- Xi Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhe Cheng
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lingling Dai
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Tianci Jiang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Pengfei Li
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Liuqun Jia
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaogang Jing
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin An
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Meng Liu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shujun Wu
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yu Wang
- Department of Respiration, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
4
|
Liu G, Chen T, Ding Z, Wang Y, Wei Y, Wei X. Inhibition of FGF-FGFR and VEGF-VEGFR signalling in cancer treatment. Cell Prolif 2021; 54:e13009. [PMID: 33655556 PMCID: PMC8016646 DOI: 10.1111/cpr.13009] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.
Collapse
Affiliation(s)
- Guihong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Cardiology Department, Chengdu NO.7 People's Hospital, Chengdu Tumor Hospital, Chengdu, China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Xi-Shi T, Xiao-Jing Z, Li-Li L, Ai-Ling Z, Li-Hua W. The crystal structure of 4-amino- N′-(4-aminobenzoyl)benzohydrazide monohydrate, C 14H 16N 4O 3. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C14H16N4O3, orthorhombic, P21212 (no. 18), a = 8.0968(7) Å, b = 16.6829(17) Å, c = 5.3097(5) Å, V = 717.22(12) Å3, Z = 2, R
gt
(F) = 0.0420, wRref
(F
2) = 0.0816, T = 293(2) K.
Collapse
Affiliation(s)
- Tai Xi-Shi
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Zhou Xiao-Jing
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Liu Li-Li
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Zhang Ai-Ling
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| | - Wang Li-Hua
- College of Chemistry and Chemical Engineering, Weifang University , Weifang , Shandong 261061 , P. R. China
| |
Collapse
|
6
|
Volynets G, Lukashov S, Borysenko I, Gryshchenko A, Starosyla S, Bdzhola V, Ruban T, Iatsyshyna A, Lukash L, Bilokin Y, Yarmoluk S. Identification of protein kinase fibroblast growth factor receptor 1 (FGFR1) inhibitors among the derivatives of 5-(5,6-dimethoxybenzimidazol-1-yl)-3-hydroxythiophene-2-carboxylic acid. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02493-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Wang X, He Q, Wu K, Guo T, Du X, Zhang H, Fang L, Zheng N, Zhang Q, Ye F. Design, synthesis and activity of novel 2,6-disubstituted purine derivatives, potential small molecule inhibitors of signal transducer and activator of transcription 3. Eur J Med Chem 2019; 179:218-232. [PMID: 31254923 DOI: 10.1016/j.ejmech.2019.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Sustained activation of STAT3 is closely related to the cancer development, but the inhibitors for STAT3 overexpression are still in the clinical research stage. In this study, a series of 2,6-disubstituted purine derivatives were designed and synthesized, and their biological activities, as small molecule inhibitors of STAT3, were assessed. Compound PD26-TL07 exhibited remarkable antiproliferative activity against three cancer cell lines (IC50 values for HCT-116, SW480 and MDA-MB-231 were 1.77 ± 0.35, 1.51 ± 0.19, and 1.25 ± 0.38 μM, respectively). Moreover, detailed biological assays revealed that PD26-TL07 could effectively inhibited STAT3 phosphorylation, and had little inhibition to others'. The newly discovered PD26-TL07 displayed an expecting anticancer effect both in vitro and in vivo. The molecular docking models revealed that PD26-TL07 could bind to the SH2 domain of STAT3. Three additional compounds (PD26-BZ01, PD26-TL03 and PD26-AS06) were also able to inhibit this phosphorylation. This study described novel 2,6-disubstituted purine derivatives as potent anticancer agents targeting STAT3.
Collapse
Affiliation(s)
- Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qin He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiqi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Taoning Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuze Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longcheng Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qihong Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Faqing Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
8
|
Discovery of Novel Triazole-Containing Pyrazole Ester Derivatives as Potential Antibacterial Agents. Molecules 2019; 24:molecules24071311. [PMID: 30987179 PMCID: PMC6480153 DOI: 10.3390/molecules24071311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
To develop new antibacterial agents, a series of novel triazole-containing pyrazole ester derivatives were designed and synthesized and their biological activities were evaluated as potential topoisomerase II inhibitors. Compound 4d exhibited the most potent antibacterial activity with Minimum inhibitory concentration (MIC) alues of 4 µg/mL, 2 µg/mL, 4 µg/mL, and 0.5 µg/mL against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella gallinarum, respectively. The in vivo enzyme inhibition assay 4d displayed the most potent topoisomerase II (IC50 = 13.5 µg/mL) and topoisomerase IV (IC50 = 24.2 µg/mL) inhibitory activity. Molecular docking was performed to position compound 4d into the topoisomerase II active site to determine the probable binding conformation. In summary, compound 4d may serve as potential topoisomerase II inhibitor.
Collapse
|
9
|
Tsai MJ, Chang WA, Jian SF, Chang KF, Sheu CC, Kuo PL. Possible mechanisms mediating apoptosis of bronchial epithelial cells in chronic obstructive pulmonary disease - A next-generation sequencing approach. Pathol Res Pract 2018; 214:1489-1496. [PMID: 30115538 DOI: 10.1016/j.prp.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease characterized by persistent airflow limitation. Apoptosis of pulmonary structural cells contributes to pulmonary destruction and dysfunction. This study aimed to explore the possible mechanisms underlying decreased cell proliferation and increased apoptosis of bronchial epithelial cells of COPD. MATERIALS AND METHODS The expression profiles of mRNAs and microRNAs in bronchial epithelial cells from a COPD patient and a normal subject were identified using next-generation sequencing (NGS) and analyzed using bioinformatic tools. RESULTS We identified 233 significantly upregulated and 204 significantly downregulated genes in COPD bronchial epithelial cells. The PI3K-Akt pathway was one of the most important dysregulated pathways in bronchial epithelial cells. We further identified that 3 genes involved in the PI3K-Akt signaling pathway, including IL6, F2R, and FGFR3, might be associated with inhibition of cell proliferation in bronchial epithelial cells, while 5 genes involved in the PI3K-Akt signaling pathway, including TLR4, IL6, F2R, FGFR3, and FGFR1, might be associated with apoptosis of bronchial epithelial cells. FGFR1 was also a predicted target for some up-regulated miRNAs in COPD bronchial epithelial cells, including hsa-miR-195-5p, hsa-miR-424-5p, and hsa-miR-6724-5p. CONCLUSION Our findings suggest PI3K-Akt signaling pathway plays an important role in COPD. We observed altered expression of apoptosis and cell proliferation-related genes that might contribute to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tz-You 1st Rd., Kaohsiung, 807, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tz-You 1st Rd., Kaohsiung, 807, Taiwan.
| | - Shu-Fang Jian
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| | | | - Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tz-You 1st Rd., Kaohsiung, 807, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan; Department of Respiratory Therapy, School of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan.
| |
Collapse
|