1
|
Zhang Q, Wei W, Jin X, Lu J, Chen S, Ogaji OD, Wang S, Du K, Chang Y, Li J. Traditional uses, phytochemistry, pharmacology, quality control and clinical studies of Cimicifugae Rhizoma: a comprehensive review. Chin Med 2024; 19:66. [PMID: 38715120 PMCID: PMC11075223 DOI: 10.1186/s13020-024-00937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Cimicifugae Rhizoma, generally known as "Sheng Ma" in China, has great medicinal and dietary values. Cimicifugae Rhizoma is the dried rhizome of Cimicifuga foetida L., Cimicifuga dahurica (Turcz.) Maxim. and Cimicifuga heracleifolia Kom., which has been used to treat wind-heat headache, tooth pain, aphtha, sore throat, prolapse of anus and uterine prolapse in traditional Chinese medicine. This review systematically presents the traditional uses, phytochemistry, pharmacology, clinical studies, quality control and toxicity of Cimicifugae Rhizoma in order to propose scientific evidence for its rational utilization and product development. Herein, 348 compounds isolated or identified from the herb are summarized in this review, mainly including triterpenoid saponins, phenylpropanoids, chromones, alkaloids, terpenoids and flavonoids. The crude extracts and its constituents had various pharmacological properties such as anti-inflammatory, antitumor, antiviral, antioxidant, neuroprotective, anti-osteoporosis and relieving menopausal symptoms. The recent research progress of Cimicifugae Rhizoma in ethnopharmacology, phytochemistry and pharmacological effects demonstrates the effectiveness of its utilization and supplies valuable guidance for further research. This review will provide a basis for the future development and utilization of Cimicifugae Rhizoma.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Kim JH, Han KS, Lee ES, Kim YG, Kim YI, Cho BO, Lee IS. The Inhibition Activity of Natural Methoxyflavonoid from Inula britannica on Soluble Epoxide Hydrolase and NO Production in RAW264.7 Cells. Int J Mol Sci 2024; 25:4357. [PMID: 38673942 PMCID: PMC11050532 DOI: 10.3390/ijms25084357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is an enzyme targeted for the treatment of inflammation and cardiovascular diseases. Activated inflammatory cells produce nitric oxide (NO), which induces oxidative stress and exacerbates inflammation. We identify an inhibitor able to suppress sEH and thus NO production. Five flavonoids 1-5 isolated from Inula britannica flowers were evaluated for their abilities to inhibit sEH with IC50 values of 12.1 ± 0.1 to 62.8 ± 1.8 µM and for their effects on enzyme kinetics. A simulation study using computational chemistry was conducted as well. Furthermore, five inhibitors (1-5) were confirmed to suppress NO levels at 10 µM. The results showed that flavonoids 1-5 exhibited inhibitory activity in all tests, with compound 3 exhibiting the most significant efficacy. Thus, in the development of anti-inflammatory inhibitors, compound 3 is a promising natural candidate.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk 27709, Republic of Korea; (J.H.K.); (K.-S.H.); (E.-S.L.); (Y.-G.K.); (Y.-I.K.)
| | - Kyung-Sook Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk 27709, Republic of Korea; (J.H.K.); (K.-S.H.); (E.-S.L.); (Y.-G.K.); (Y.-I.K.)
| | - Eun-Song Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk 27709, Republic of Korea; (J.H.K.); (K.-S.H.); (E.-S.L.); (Y.-G.K.); (Y.-I.K.)
| | - Yong-Goo Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk 27709, Republic of Korea; (J.H.K.); (K.-S.H.); (E.-S.L.); (Y.-G.K.); (Y.-I.K.)
| | - Yong-Il Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Chungbuk 27709, Republic of Korea; (J.H.K.); (K.-S.H.); (E.-S.L.); (Y.-G.K.); (Y.-I.K.)
| | - Byoung Ok Cho
- Institute of Health Science, Jeonju University, 303 Cheonjam-ro, Jeonju-si 55069, Republic of Korea
| | - Ik Soo Lee
- Km Covergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
3
|
Fatima S, Verma M, Ansari IA. Phytochemistry and ethnopharmacological studies of genus Cimicifuga: A systematic and comprehensive review. Fitoterapia 2024; 172:105767. [PMID: 38052334 DOI: 10.1016/j.fitote.2023.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
ETHNOPHARMACOLOGICAL USES Black cohosh, also known as Cimicifuga sp., is one of the most widely used ethnomedicine for the treatment of major health issues in women. Some reports show that Cimicifuga sp. exhibit anti-cancer, anti-viral, anti-microbial, anti-pyretic, and anti-inflammatory properties. PURPOSE OF THIS REVIEW The objective of this comprehensive review is to furnish current and exhaustive knowledge pertaining to the pharmacological, phytochemical, and therapeutic properties of Cimicifuga sp. MATERIALS AND METHODS In this review, all the available information was collected on Cimicifugasp. via computerized search using Google Scholar, PubMed, Research Gate, Sci-Hub, supplementary resources (books, government reports, and Ph.D. theses). RESULT The phytochemical investigation on Cimicifuga sp. has shown phytoconstituents such as triterpenoid glycosides, phenylpropanoid, flavonoids, saponin, lignan, nitrogenous compounds, alkaloids, 4α-Methyl steroids and some other component like monoterpene lactones cimicifugolides A-C etc. Cimicifuga conveys a wide scope of research on in-vitro and in-vivo pharmacological potential, like anti-cancer, anti-microbial, anti-viral, anti-inflammatory, estrogenic, anti-oxidant, anti-neoplastic, anti-depressant, anti-Alzheimer, and anti-climacteric properties. CONCLUSION This article discusses the medicinal and traditional histories of various Cimicifuga species. Because quality control and safety assessments of Cimicifuga species are currently lacking, only a limited portion of the plant may be used as medication. The majority of current research focuses on triterpene glycosides. Although there are a variety of additional molecules that may have novel biological functions, systematic investigations of these compounds are lacking. The Cimicifuga plant has to go through a lot of studies before it can be completely used in clinics as a viable medicinal contender.
Collapse
Affiliation(s)
- Shireen Fatima
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Mahima Verma
- Department of Biosciences, Integral University, Lucknow 226026, India
| | | |
Collapse
|
4
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
5
|
Inhibitory Activity of Quaternary Isoquinoline Alkaloids on Soluble Epoxide Hydrolase. Curr Issues Mol Biol 2022; 44:4282-4289. [PMID: 36135206 PMCID: PMC9498296 DOI: 10.3390/cimb44090294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The quaternary isoquinoline alkaloids of palmatine (1), berberine (2), and jatrorrhizine (3) were evaluated in terms of their ability to inhibit soluble epoxide hydrolase (sEH). They had similar inhibitory activities, with IC50 values of 29.6 ± 0.5, 33.4 ± 0.8, and 27.3 ± 0.4 μM, respectively. Their respective Ki values of 26.9, 46.8, and 44.5 μM—determined by enzyme kinetics—indicated that they inhibited the catalytic reaction by binding noncompetitively with sEH. The application of computational chemistry to the in vitro results revealed the site of the receptor to which the ligand would likely bind. Accordingly, three alkaloids were identified as having a suitable basic skeleton for lead compound development of sEH inhibitors.
Collapse
|
6
|
Tamfu AN, Kucukaydin S, Yeskaliyeva B, Ozturk M, Dinica RM. Non-Alkaloid Cholinesterase Inhibitory Compounds from Natural Sources. Molecules 2021; 26:5582. [PMID: 34577053 PMCID: PMC8472022 DOI: 10.3390/molecules26185582] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder of different brain regions accompanied by distresses and affecting more than 25 million people in the world. This progressive brain deterioration affects the central nervous system and has negative impacts on a patient's daily activities such as memory impairment. The most important challenge concerning AD is the development of new drugs for long-term treatment or prevention, with lesser side effects and greater efficiency as cholinesterases inhibitors and the ability to remove amyloid-beta(Aβ) deposits and other related AD neuropathologies. Natural sources provide promising alternatives to synthetic cholinesterase inhibitors and many have been reported for alkaloids while neglecting other classes with potential cholinesterase inhibition. This review summarizes information about the therapeutic potential of small natural molecules from medicinal herbs, belonging to terpenoids, coumarins, and phenolic compounds, and others, which have gained special attention due to their specific modes of action and their advantages of low toxicity and high efficiency in the treatment of AD. Some show superior drug-like features in comparison to synthetic cholinesterase inhibitors. We expect that the listed phytoconstituents in this review will serve as promising tools and chemical scaffolds for the discovery of new potent therapeutic leads for the amelioration and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454 Ngaoundere, Cameroon
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey;
| | - Balakyz Yeskaliyeva
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Mehmet Ozturk
- Department of Chemistry, Mugla Sitki Kocman University, Mugla 48000, Turkey; (B.Y.); (M.O.)
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
7
|
In Vitro Investigation of Acetylcholinesterase Inhibitors Isolated from the Fruit of Stauntonia hexaphylla. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Pang QQ, Li T, Liu LX, Shi DF, Yao XS, Li HB, Yu Y. Systematically identifying the anti-inflammatory constituents of Cimicifuga dahurica by UPLC-Q/TOF-MS combined with network pharmacology analysis. Biomed Chromatogr 2021; 35:e5177. [PMID: 33998678 DOI: 10.1002/bmc.5177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Cimicifuga dahurica (Turcz.) Maxim, which is also regarded as the main origin of "Shengma" in the Chinese Pharmacopoeia, has been used as a cooling and detoxification agent for thousands of years. Our previous phytochemical investigations of C. dahurica extracts (CDEs) led to the isolation of a series of 9,19-cycloalkane triterpenoids and phenolic acids showing a potential anti-inflammatory activity. However, the chemical profiling of CDEs and the material basis of its anti-inflammatory effect in vivo has not been clarified. In the present study, the CDE chemical profile and prototype components in rat plasma were identified via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. As a result, a total of 106 components were identified or tentatively characterized in CDEs, including 54 triterpenoids, 35 phenolic acids, eight amides and nine other type constituents (39 compounds were confirmed with the reference standards). In addition, 20 prototype components (15 triterpenoids and five phenolic acids) were identified in rat plasma, which potentially related to the anti-inflammatory effects of CDEs. Moreover, the anti-inflammatory activities of the main prototype components were further evaluated by their inhibitory effects on the production of NO, as well as the expressions of iNOS and COX-2 in lipopolysaccharide-stimulated RAW264.7 cells, which indicated that 9,19-cycloalkane triterpenoids may play an anti-inflammatory role by down-regulating the expression of iNOS.
Collapse
Affiliation(s)
- Qian-Qian Pang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ling-Xian Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Dan-Feng Shi
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Cruz-Vicente P, Passarinha LA, Silvestre S, Gallardo E. Recent Developments in New Therapeutic Agents against Alzheimer and Parkinson Diseases: In-Silico Approaches. Molecules 2021; 26:2193. [PMID: 33920326 PMCID: PMC8069930 DOI: 10.3390/molecules26082193] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases (ND), including Alzheimer's (AD) and Parkinson's Disease (PD), are becoming increasingly more common and are recognized as a social problem in modern societies. These disorders are characterized by a progressive neurodegeneration and are considered one of the main causes of disability and mortality worldwide. Currently, there is no existing cure for AD nor PD and the clinically used drugs aim only at symptomatic relief, and are not capable of stopping neurodegeneration. Over the last years, several drug candidates reached clinical trials phases, but they were suspended, mainly because of the unsatisfactory pharmacological benefits. Recently, the number of compounds developed using in silico approaches has been increasing at a promising rate, mainly evaluating the affinity for several macromolecular targets and applying filters to exclude compounds with potentially unfavorable pharmacokinetics. Thus, in this review, an overview of the current therapeutics in use for these two ND, the main targets in drug development, and the primary studies published in the last five years that used in silico approaches to design novel drug candidates for AD and PD treatment will be presented. In addition, future perspectives for the treatment of these ND will also be briefly discussed.
Collapse
Affiliation(s)
- Pedro Cruz-Vicente
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Luís A. Passarinha
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Laboratory of Pharmaco-Toxicology—UBIMedical, University of Beira Interior, 6200-001 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- Laboratory of Pharmaco-Toxicology—UBIMedical, University of Beira Interior, 6200-001 Covilhã, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugenia Gallardo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal;
- Laboratory of Pharmaco-Toxicology—UBIMedical, University of Beira Interior, 6200-001 Covilhã, Portugal
| |
Collapse
|
10
|
Abstract
:
For decades now, compounds in the cycloartane-type series have been shown to
have versatile pharmacological activities. However, no extensive review has been written
to summarize these health-beneficial activities. Therefore, the purpose of this paper is to
systematically highlight the biological activities of these compounds, including their antitumor
and anti-osteoporosis effects, their effects on receptors, cytokine release, and
chronic renal failure, as well as their tyrosinase inhibitory, anticomplement, anti-parasite,
anti-HIV, and antituberculosis activities. In this review, we have summarized the structures
of over 200 compounds based on their characteristics and described their structureactivity
relationships (SARs), and potential mechanisms of action.
Collapse
Affiliation(s)
- Wenyan Gao
- Key Laboratory of Neuropsychiatric Drug, Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences & Hangzhou Medical College, Hangzhou, 310013, China
| | - Xiaoyan Dong
- Department of Pharmacy and Medicine Pharmacy, Jiang Su College of Nursing, Huian, 223003, China
| | - Taiming Wei
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| |
Collapse
|
11
|
Substituted cinnamic anhydrides act as selective inhibitors of acetylcholinesterase. Bioorg Chem 2019; 90:103058. [DOI: 10.1016/j.bioorg.2019.103058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 01/09/2023]
|
12
|
Lu Q, Zhang WY, Pan DB, Shi DF, Pang QQ, Li HB, Yao XJ, Yao ZH, Yu Y, Yao XS. Phenolic acids and their glycosides from the rhizomes of Cimicifuga dahurica. Fitoterapia 2019; 134:485-492. [DOI: 10.1016/j.fitote.2019.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
|