1
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Beatriz Vermelho A, Rodrigues GC, Nocentini A, Mansoldo FRP, Supuran CT. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin Drug Discov 2022; 17:1147-1158. [PMID: 36039500 DOI: 10.1080/17460441.2022.2117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giseli Capaci Rodrigues
- UNIGRANRIO - Universidade do Grande Rio Programa de Pós-Graduação em Ensino das Ciências, Rio de Janeiro, Brazil
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Felipe R P Mansoldo
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| |
Collapse
|
3
|
De Luca V, Angeli A, Mazzone V, Adelfio C, Carginale V, Scaloni A, Carta F, Selleri S, Supuran CT, Capasso C. Heterologous expression and biochemical characterisation of the recombinant β-carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen malassezia pachydermatis. J Enzyme Inhib Med Chem 2021; 37:62-68. [PMID: 34894958 PMCID: PMC8667878 DOI: 10.1080/14756366.2021.1994559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Warm-blooded animals may have Malassezia pachydermatis on healthy skin, but changes in the skin microenvironment or host defences induce this opportunistic commensal to become pathogenic. Malassezia infections in humans and animals are commonly treated with azole antifungals. Fungistatic treatments, together with their long-term use, contribute to the selection and the establishment of drug-resistant fungi. To counteract this rising problem, researchers must find new antifungal drugs and enhance drug resistance management strategies. Cyclic adenosine monophosphate, adenylyl cyclase, and bicarbonate have been found to promote fungal virulence, adhesion, hydrolase synthesis, and host cell death. The CO2/HCO3-/pH-sensing in fungi is triggered by HCO3- produced by metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1). It has been demonstrated that the growth of M. globosa can be inhibited in vivo by primary sulphonamides, which are the typical CA inhibitors. Here, we report the cloning, purification, and characterisation of the β-CA (MpaCA) from the pathogenic fungus M. pachydermatis, which is homologous to the enzyme encoded in the genome of M. globosa and M. restricta, that are responsible for dandruff and seborrhoeic dermatitis. Fungal CAs could be thus considered a new pharmacological target for combating fungal infections and drug resistance developed by most fungi to the already used drugs.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy.,Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Andrea Angeli
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Valeria Mazzone
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudia Adelfio
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Fabrizio Carta
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Silvia Selleri
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
4
|
Supuran CT, Capasso C. A Highlight on the Inhibition of Fungal Carbonic Anhydrases as Drug Targets for the Antifungal Armamentarium. Int J Mol Sci 2021; 22:4324. [PMID: 33919261 PMCID: PMC8122340 DOI: 10.3390/ijms22094324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon dioxide (CO2), a vital molecule of the carbon cycle, is a critical component in living organisms' metabolism, performing functions that lead to the building of compounds fundamental for the life cycle. In all living organisms, the CO2/bicarbonate (HCO3-) balancing is governed by a superfamily of enzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the pivotal physiological reaction, consisting of the reversible hydration of the CO2 to HCO3- and protons. Opportunistic and pathogenic fungi can sense the environmental CO2 levels, which influence their virulence or environmental subsistence traits. The fungal CO2-sensing is directly stimulated by HCO3- produced in a CA-dependent manner, which directly activates adenylyl cyclase (AC) involved in the fungal spore formation. The interference with CA activity may impair fungal growth and virulence, making this approach interesting for designing antifungal drugs with a novel mechanism of action: the inhibition of CAs linked to the CO2/HCO3-/pH chemosensing and signaling. This review reports that sulfonamides and their bioisosteres as well as inorganic anions can inhibit in vitro the β- and α-CAs from the fungi, suggesting how CAs may be considered as a novel "pathogen protein" target of many opportunistic, pathogenic fungi.
Collapse
Affiliation(s)
- Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
5
|
Chen X, Luo W, Wang Y, Li Z, Ma X, Peng AY. Efficient Synthesis of Phosphonamidates through One-Pot Sequential Reactions of Phosphonites with Iodine and Amines. Chemistry 2020; 26:14474-14480. [PMID: 32776399 DOI: 10.1002/chem.202002934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/10/2022]
Abstract
A one-pot sequential strategy to construct phosphonamidates has been developed by generating phosphonites in situ from arylmagnesium bromides and triethyl phosphite followed by treatment with iodine and amines. A variety of phosphonamidates were obtained with good to excellent yields at room temperature from easily available materials.
Collapse
Affiliation(s)
- Xunwei Chen
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Yanlin Wang
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Zikang Li
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Xiaorui Ma
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Ai-Yun Peng
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| |
Collapse
|
6
|
Urbański LJ, Angeli A, Hytönen VP, Di Fiore A, Parkkila S, De Simone G, Supuran CT. Inhibition of the newly discovered β‑carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules. J Inorg Biochem 2020; 213:111274. [PMID: 33068968 DOI: 10.1016/j.jinorgbio.2020.111274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 01/19/2023]
Abstract
The protozoan pathogen Trichomonas vaginalis encodes two carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the β-class. One of these enzymes, T. vaginalis carbonic anhydrase 1 (TvaCA1), was recently cloned and characterized by our group, and its X-ray crystal structure reported. No inhibitors of this enzyme were reported up until now. Here we investigated the inhibition of TvaCA1 with inorganic anions and small molecules and observed that thiocyanate, cyanide, selenite, selenocyanate and divanadate are sub-millimolar inhibitors, whereas sulfamide, sulfate, phenylboronic acid and phenylarsonic acid are micromolar inhibitors. Finding effective TvaCA1 inhibitors may be useful for developing new antiprotozoan drugs.
Collapse
Affiliation(s)
- Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland; Fimlab Ltd., Arvo Ylpön katu 4, FI-33520 Tampere, Finland
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging of the National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland; Fimlab Ltd., Arvo Ylpön katu 4, FI-33520 Tampere, Finland
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging of the National Research Council, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino (Firenze), Italy.
| |
Collapse
|
7
|
Güzel-Akdemir Ö, Carradori S, Grande R, Demir-Yazıcı K, Angeli A, Supuran CT, Akdemir A. Development of Thiazolidinones as Fungal Carbonic Anhydrase Inhibitors. Int J Mol Sci 2020; 21:ijms21082960. [PMID: 32331447 PMCID: PMC7215574 DOI: 10.3390/ijms21082960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
In our efforts to find new and selective thiazolidinone-based anti-Candida agents, we synthesized and tested 26 thiazolidinones against several Candida spp. and Gram-positive and Gram-negative bacteria. The compounds showed selective antifungal activity with potency similar to fluconazole and clotrimazole, while lacking strong antibacterial activity. Molecular docking and molecular dynamics studies were performed on Candida CYP51a1 and carbonic anhydrase (CA) enzymes to further suggest putative targets that could mediate the antifungal effects of these compounds. Finally, the compounds were tested in enzyme inhibition assays to assess their putative mechanism of action and showed promising KI values in the 0.1–10 µM range against the Candida glabrata β-CA enzyme CgNce103.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Istanbul University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 34116 Istanbul, Turkey; (Ö.G.-A.); (K.D.-Y.)
| | - Simone Carradori
- Dipartimento di Farmacia, “G. d′Annunzio” University of Chieti-Pescara, Via dei vestini 31, 66100 Chieti, Italy; (S.C.); (R.G.)
| | - Rossella Grande
- Dipartimento di Farmacia, “G. d′Annunzio” University of Chieti-Pescara, Via dei vestini 31, 66100 Chieti, Italy; (S.C.); (R.G.)
| | - Kübra Demir-Yazıcı
- Istanbul University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 34116 Istanbul, Turkey; (Ö.G.-A.); (K.D.-Y.)
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (C.T.S.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (C.T.S.)
| | - Atilla Akdemir
- Bezmialem Vakif University, Computer-aided drug discovery laboratory, Department of Pharmacology, Faculty of Pharmacy, 34093 Istanbul, Turkey
- Correspondence: ; Tel.: +90-212-523-2288 (ext. 3142)
| |
Collapse
|