1
|
Yenny SW, Jamsari J, Hazmi AA, Cuandra KN, Hanifah W, Yahono AS, Wahyudi DP, Buana GR, Rahman ARK, Maharani AD, Firjatullah MF, Maulana R, Prayogi NM, Tristan CD. In silico analysis of Arbacia lixula-derived peptides and plasmid construction for recombinant anti-aging therapies. NARRA J 2024; 4:e1283. [PMID: 39816070 PMCID: PMC11731804 DOI: 10.52225/narra.v4i3.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
Skin aging is one of the degenerative processes influenced by tyrosinase, elastase, collagenase, hyaluronidase, and matrix metalloproteinase-9 (MMP9) activity. One promising avenue for discovering antiaging therapeutics is the peptides from the Arbacia lixula spine. The aim of this study was to explore the potential of peptides from A. lixula spine as a multitarget inhibitor for recombinant antiaging therapies through in silico approaches. The crystal structure of peptides previously identified in A. lixula spine was visualized using the UCSF Chimera. The protein data bank (PDB) database was used to obtain the crystal structures of protein targets. The webservers Innovagen, AllerTop, and ToxinPred were utilized to predict the peptide's water solubility, toxicity, and allergenicity. MOE application was used to prepare all ligands and proteins, molecular docking, and visualization. Molecular dynamics simulations were carried out on the protein-ligand complexes on Yasara Dynamics application. The Benchling website was used to perform virtual electrophoresis and reconstruct the recombinant plasmid (Psb1c3). Based on the molecular docking results, peptide REGSPDLLE has the potential as a multitarget inhibitor of tyrosinase (-9.07 kcal/mol), hyaluronidase (-10.57 kcal/mol), elastase (-9.32 kcal/mol), collagenase (-10.57 kcal/mol), and MMP9 (-10.43 kcal/mol). Peptide REGSPDLLE was selected due to its strong binding affinity on the active site of each target protein and exhibits non-toxic, non-allergenic, and good water-soluble as indicated by Support Vector Machine score <0. Molecular dynamics simulations confirmed stable interactions with receptor proteins. Peptide REGSPDLLE was successfully inserted into the recombinant pSB1C3 plasmid, confirmed by virtual electrophoresis with bands at ∼2000bp and ∼150 bp. Further in vitro and in vivo studies are necessary to verify the anti- aging efficacy of peptide REGSPDLLE.
Collapse
Affiliation(s)
- Satya W. Yenny
- Department of Dermatology, Venereology and Esthetic, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Jamsari Jamsari
- Department of Agrotechnology, Faculty of Agriculture, Universitas Andalas, Padang, Indonesia
| | - Auliya A. Hazmi
- Department of Dermatology, Venereology and Esthetic, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Kevin N. Cuandra
- Department of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Wafiq Hanifah
- Department of Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Angela S. Yahono
- Department of Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dhyani P. Wahyudi
- Department of Medicine, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Gherriandi R. Buana
- Department of Medicine, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Awalil RK. Rahman
- Department of Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Annisa D. Maharani
- Department of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Muhammad F. Firjatullah
- Department of Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Rafi Maulana
- Department of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Norbertus M. Prayogi
- Department of Medicine, Faculty of Medicine, Universitas Lampung, Lampung, Indonesia
| | - Christopher D. Tristan
- Department of Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
2
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
3
|
Yin Q, Zhang H, Huang T, Liu B, Negm S, El-Kott AF. Anti-collagenase, Anti-elastase, Anti-urease, and Anti-cancer Potentials of Isokaempferide as Natural Compound: In vitro and in silico Study. J Oleo Sci 2024; 73:187-199. [PMID: 38311409 DOI: 10.5650/jos.ess23176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
One of the main goals of medicinal chemistry in recent years has been the development of new enzyme inhibitors and anti-cancer medicines. The isokaempferide' ability to inhibit the enzymes urease, elastase, and collagenase were also studied. The results showed that isokaempferide was the most effective compound against the assigned enzymes, with IC 50 values of 23.05 µM for elastase, 12.83 µM for urease, and 33.62 µM for collagenase respectively. It should be emphasized that natural compound was more effective at inhibiting some enzymes. Additionally, the compound was tested for their anti-cancer properties using colon, lung, breast cancer cell lines. The chemical activities of isokaempferide against urease, collagenase, and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compound were evaluated against lung cancer cells such as SPC-A-1, SK-LU-1, 95D, breast cancer cells like MCF7, Hs 578Bst, Hs 319.T, and UACC-3133 cell lines, and colon cancer cell lines like CL40, SW1417, LS1034, and SW480. The chemical activities of isokaempferide against some of the expressed surface receptor proteins (EGFR, estrogen receptor, CD47, progesterone receptor, folate receptor, CD44, HER2, CD155, CXCR4, CD97, and endothelin receptor) in the mentioned cell lines were assessed using the molecular docking calculations. The results showed the probable interactions and their characteristics at an atomic level. The docking scores revealed that isokaempferide has a strong binding affinity to the enzymes and proteins. In addition, the compound formed powerful contact with the enzymes and receptors. Thus, isokaempferide could be potential inhibitor for enzymes and cancer cells.
Collapse
Affiliation(s)
- Qian Yin
- Department of Pathology, The Third Clinical Medical College of China Three Gorges University·Gezhouba Central Hospital of Sinopharm
| | - Hao Zhang
- Department of Endocrinology, The Third Clinical Medical College of China Three Gorges University·Gezhouba Central Hospital of Sinopharm
| | - Ting Huang
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry
| | - Bin Liu
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University
- Department of Zoology, Faculty of Science, Damanhour University
| |
Collapse
|
4
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
5
|
Zych M, Urbisz K, Kimsa-Dudek M, Kamionka M, Dudek S, Raczak BK, Wacławek S, Chmura D, Kaczmarczyk-Żebrowska I, Stebel A. Effects of Water-Ethanol Extracts from Four Sphagnum Species on Gene Expression of Selected Enzymes in Normal Human Dermal Fibroblasts and Their Antioxidant Properties. Pharmaceuticals (Basel) 2023; 16:1076. [PMID: 37630991 PMCID: PMC10458669 DOI: 10.3390/ph16081076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mosses (Bryophyta), particularly species of the genus Sphagnum, which have been used for centuries for the treatment of skin diseases and damage, are still not explored enough in terms of their use in cosmetics. The purpose of this study was to determine the antioxidant properties of water-ethanol extracts from four selected species of the genus Sphagnum (S. girgenshonii Russow, S. magellanicum Brid., S. palustre L., and S. squarrosum Crome) and their impact on the expression of genes encoding key enzymes for the functioning of the skin. In this study, the effects of Sphagnum extracts on the expression of genes encoding tyrosinase, collagenase, elastase, hyaluronidase and hyaluronic acid synthase in human dermal fibroblasts were determined for the first time in vitro. The extracts inhibited tyrosinase gene expression and showed antioxidant activity. The experiment showed an increase in the expression of some genes encoding collagenase (MMP1) or hyaluronidase (HYAL2, HYAL3 and HYAL4) and a decrease in the hyaluronan synthase (HAS1, HAS2 and HAS3) genes expression by the tested extracts. The obtained results suggest that using extracts from the tested Sphagnum species in anti-aging cosmetics does not seem beneficial. Further studies are needed to clarify their impact on the skin.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Katarzyna Urbisz
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Maria Kamionka
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Barbara Klaudia Raczak
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, 46117 Liberec, Czech Republic; (B.K.R.)
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec (TUL), 46117 Liberec, Czech Republic
| | - Damian Chmura
- Institute of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland;
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (K.U.); (S.D.); (I.K.-Ż.)
| | - Adam Stebel
- Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (M.K.); (A.S.)
| |
Collapse
|
6
|
Morone J, Lopes G, Morais J, Neves J, Vasconcelos V, Martins R. Cosmetic Application of Cyanobacteria Extracts with a Sustainable Vision to Skincare: Role in the Antioxidant and Antiaging Process. Mar Drugs 2022; 20:md20120761. [PMID: 36547908 PMCID: PMC9785593 DOI: 10.3390/md20120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Nature-based and sustainably sourced cosmetics have been dominating the area of skincare products worldwide. Due to their antioxidant and antiaging properties, compounds from cyanobacteria, such as carotenoids and phycobiliproteins, may replace synthetic ingredients in cosmetic formulations and may be used in products such as sunscreens, skincare creams, and makeup. In this study, we evaluated the potential of acetonic and aqueous extracts from cyanobacteria strains of the genera Cyanobium and Leptothoe and from strains within Synechococcales and Oscillatoriales orders, for use in cosmetics. Extractions were sequentially performed with acetone and water. Extracts were firstly analyzed for their toxicity to keratinocytes, fibroblasts, and endothelial cells (HaCAT, 3T3L1 and hCMEC/D3, respectively). The non-cytotoxic extracts were characterized in terms of total proteins, carotenoids, chlorophyll, phenols, phycobiliproteins, and analyzed for their antioxidant potential against the superoxide anion radical (O2•−), and for their ability to inhibit key enzymes associated with the skin aging process. Aqueous extracts were richer in total proteins and phycobiliproteins. The aqueous extracts of Synechococcales cyanobacterium LEGE 181157 and Synechococcales cyanobacterium LEGE 181150 showed the highest value for total proteins (760.81 and 695.25 μg BSA mL−1dry extract, respectively) and the best values regarding O2•− scavenging (IC50 = 63.24 and 112.18 μg mL−1dry extract, respectively) with a significant negative correlation observed (p < 0.01). Moreover, aqueous extracts of Synechococcales cyanobacterium LEGE 181150 and Synechococcales cyanobacterium LEGE 181157 inhibited hyaluronidase, (IC50 of 483.86 and 645.06 μg mL−1dry extract, respectively), with a significant negative correlation with total proteins (p < 0.05), pointing out the contribution of these compounds to the biological activities observed. Acetonic extracts were richer in carotenoids and phenols. Zeaxanthin and β-carotene were predominant among all strains, being present in higher amount in Cyanobium sp. LEGE 07175 (53.08 μg mg−1) and Leptothoe sp. LEGE 181156 (47.89 μg mg−1), respectively. The same strains also showed the highest values for collagenase inhibition at 750 μg mL−1dry extract (32.88 and 36.61%, respectively). Furthermore, Leptothoe sp. LEGE 181156 exhibited the lowest IC50 value for tyrosinase inhibition (465.92 μg mL−1dry extract) and Synechococcales cyanobacterium LEGE 181157 presented the best values for elastase inhibition (IC50 of 380.50 and IC25 of 51.43 μg mL−1dry extract). In general, cyanobacteria extracts demonstrated potential for being used for antiaging purposes, with aqueous extracts being more efficient at free radicals scavenging and acetonic ones at avoiding degradation of dermal matrix components.
Collapse
Affiliation(s)
- Janaína Morone
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Graciliana Lopes
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - João Morais
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Jorge Neves
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- Correspondence:
| |
Collapse
|
7
|
Prommaban A, Sriyab S, Marsup P, Neimkhum W, Sirithunyalug J, Anuchapreeda S, To-anun C, Chaiyana W. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. PHARMACEUTICAL BIOLOGY 2022; 60:225-234. [PMID: 35068295 PMCID: PMC8786250 DOI: 10.1080/13880209.2021.2025255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/28/2021] [Indexed: 05/16/2023]
Abstract
CONTEXT Cordyceps militaris and Isaria tenuipes (Cordycipitaceae) are high-value fungi that are used for health-promoting food supplements. Since laboratory cultivation has begun for these fungi, increased output has been achieved. OBJECTIVE This study compared the chemical profiles, antioxidant, anti-tyrosinase, and skin extracellular matrix degradation inhibition between mycelium and fruiting body of C. militaris and I. tenuipes. MATERIALS AND METHODS The antioxidative potential of 10% v/v aqueous infused extract from each fungus was separately investigated using 2,2-azinobis(3-ethylbenzo-thiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant ability, and ferric thiocyanate methods. The inhibition against MMP-1, elastase, and hyaluronidase were determined to reveal their anti-wrinkle potential. Anti-tyrosinase activities were determined. RESULTS C. militaris and I. tenuipes extracts were found to contain a wide range of bioactive compounds, including phenolics, flavonoids, and adenosine. A correlation was discovered between the chemical compositions and their biological activities. The extract from I. tenuipes fruiting body (IF) was highlighted as an extraordinary elastase inhibitor (IC50 = 0.006 ± 0.004 mg/mL), hyaluronidase inhibitor (IC50: 30.3 ± 3.2 mg/mL), and antioxidant via radical scavenging (ABTS IC50: 0.22 ± 0.02 mg/mL; DPPH IC50: 0.05 ± 0.02 mg/mL), thereby reducing ability (EC1: 95.3 ± 4.8 mM FeSO4/g extract) and lipid peroxidation prevention (IC50: 0.40 ± 0.11 mg/mL). IF had a three-times higher EC1 value than ascorbic acid and significantly higher elastase inhibition than epigallocatechin gallate. DISCUSSION AND CONCLUSIONS IF is proposed as a powerful natural extract with antioxidant and anti-wrinkle properties; therefore, it is suggested for further use in pharmaceutical, cosmeceutical, and nutraceutical industries.
Collapse
Affiliation(s)
- Adchara Prommaban
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Suwannee Sriyab
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Pachabadee Marsup
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Waranya Neimkhum
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samutprakarn, Thailand
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiwat To-anun
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Pintus F, Floris S, Fais A, Era B, Kumar A, Gatto G, Uriarte E, Matos MJ. Hydroxy-3-Phenylcoumarins as Multitarget Compounds for Skin Aging Diseases: Synthesis, Molecular Docking and Tyrosinase, Elastase, Collagenase and Hyaluronidase Inhibition, and Sun Protection Factor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206914. [PMID: 36296507 PMCID: PMC9611449 DOI: 10.3390/molecules27206914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022]
Abstract
Skin aging is a progressive biological process of the human body, and it is not only time-dependent. Differently substituted 3-phenylcoumarins proved to efficiently inhibit tyrosinase. In the current work, new substitution patterns have been explored, and the biological studies were extended to other important enzymes involved in the processes of skin aging, as elastase, collagenase and hyaluronidase. From the studied series, five compounds presented inhibitory activity against tyrosinase, one compound against elastase, eight compounds against collagenase and two compounds against hyaluronidase, being five compounds dual inhibitors. The 3-(4'-Bromophenyl)-5,7-dihydroxycoumarin (1) and 3-(3'-bromophenyl)-5,7-dihydroxycoumarin (2) presented the best profiles against tyrosinase (IC50 = 1.05 µM and 7.03 µM) and collagenase (IC50 = 123.4 µM and 110.4 µM); the 3-(4'-bromophenyl)-6,7-dihydroxycoumarin (4) presented a good inhibition against tyrosinase and hyaluronidase; the 3-(3'-bromophenyl)-6,7-dihydroxycoumarin (5) showed an effective tyrosinase and elastase inhibition; and 6,7-dihydroxy-3-(3'-hydroxyphenyl)coumarin (11) presented a dual profile inhibition against collagenase and hyaluronidase. Furthermore, considering the overall activities tested, compounds 1 and 2 proved to be the most promising anti-aging compounds. These compounds also showed to have a photo-protective effect, without being cytotoxic to human skin keratinocyte cells. To predict the binding site with the target enzymes, computational studies were also carried out.
Collapse
Affiliation(s)
- Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence: (A.F.); (M.J.M.)
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (A.F.); (M.J.M.)
| |
Collapse
|
9
|
Susano P, Silva J, Alves C, Martins A, Pinteus S, Gaspar H, Goettert MI, Pedrosa R. Saccorhiza polyschides-A Source of Natural Active Ingredients for Greener Skincare Formulations. Molecules 2022; 27:6496. [PMID: 36235032 PMCID: PMC9573298 DOI: 10.3390/molecules27196496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1-F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.
Collapse
Affiliation(s)
- Patrícia Susano
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari-Univates, Lajeado 95914-014, RS, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D 72076 Tübingen, Germany
| | - Rui Pedrosa
- MARE/ARNET, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
10
|
Pagels F, Almeida C, Vasconcelos V, Guedes AC. Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp. Mar Drugs 2022; 20:md20080481. [PMID: 36005483 PMCID: PMC9409843 DOI: 10.3390/md20080481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The current mindset in the cosmetics market about sustainable ingredients had increased the search for new sources of natural active ingredients. Cyanobacteria are a great source of functional ingredients for cosmetics, as a producer of pigments with described bioactive potential (carotenoids and phycobiliproteins). This work aimed to evaluate the cosmetic potential of marine cyanobacterium Cyanobium sp. pigment-targeted extracts (carotenoids and phycobiliproteins), evaluating their in vitro safety through cytotoxicity assays, cosmetic-related enzyme inhibition, ingredient stability, and putative product (serum formulation). Results showed no cytotoxicity from the extracts in skin-related cell lines. Carotenoid extract showed anti-hyaluronidase capacity (IC50 = 108.74 ± 5.74 mg mL−1) and phycobiliprotein extract showed anti-hyaluronidase and anti-collagenase capacity (IC50 = 67.25 ± 1.18 and 582.82 ± 56.99 mg mL−1, respectively). Regarding ingredient and serum stability, both ingredients showed higher stability at low-temperature conditions, and it was possible to maintain the pigment content and bioactive capacity stable during the tested period, although in higher temperatures the product was degraded in a week. As a major conclusion, both extracts can be potential natural and sustainable ingredients for cosmetic uses, with relatively simple formulation and storage, and can be promising natural anti-aging ingredients due to their bioactive capacity.
Collapse
Affiliation(s)
- Fernando Pagels
- CIIMAR/CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (A.C.G.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cíntia Almeida
- ISS—Ínclita Seaweed Solutions, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (A.C.G.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Correspondence:
| | - A. Catarina Guedes
- CIIMAR/CIMAR-LA—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (A.C.G.)
- ISS—Ínclita Seaweed Solutions, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
11
|
Antão AR, Bangay G, Domínguez-Martín EM, Díaz-Lanza AM, Ríjo P. Plectranthus ecklonii Benth: A Comprehensive Review Into its Phytochemistry and Exerted Biological Activities. Front Pharmacol 2021; 12:768268. [PMID: 34916943 PMCID: PMC8670309 DOI: 10.3389/fphar.2021.768268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Ethnopharmacological Relevance: Plectranthus genus (Lamiaceae family) contain several species with acknowledged ethnopharmacological uses, such as, for gastrointestinal and respiratory-related problems, due to their anti-inflammatory, antibacterial and antifungal properties. The bioactivity of isolated medicinal compounds from this genus justifies the increased interest in recent times for species of Plectranthus, placing them in the spotlight for natural product drug development. Aim of the study: To the best of our knowledge, this is the first review on the biological activities of Plectranthus ecklonii Benth. As such, the aim of this review was three-fold: 1) to summarize the chemical compounds isolated from P. ecklonii; 2) to collate the biological activities and mechanisms of action of these compounds from in vitro studies; and 3) to evaluate the documented uses and potential applications of this species, in order to postulate on the direction of pharmaceutical uses of this species. Materials and methods: An extensive database retrieval was performed using the electronic databases Web of Science, PubMed, Google Scholar and ScienceDirect. The search criteria consisted of the keywords "Plectranthus ecklonii", "Plectranthus ecklonii + review", "Plectranthus ecklonii + diterpenes" or "Plectranthus ecklonii + abietanes", "ecklonii + parviflorone D", searched individually and as combinations. Eligibility criteria were set out and titles in English, Portuguese and Spanish were reviewed, with all references included dating from 1970 to 2021. A total of 169 papers were selected and included. Chemical structures were drawn using ChemDraw 20.0, CID numbers were searched in PubChem and the PRISMA diagram was created using PowerPoint 2012. Results: To date, a total of 28 compounds have been isolated from P. ecklonii, including diterpenes, triterpenes, flavonoids, and hydroxycinnamic acids. Most focused on the antimicrobial action of its constituents, although compounds have demonstrated other bioactivities, namely antioxidant, anti-inflammatory and antitumor. The most recent studies emphasize the diterpenoids, particularly parviflorone D, with the help of nanotechnology. Conclusions: The widespread ethnobotanical and traditional uses of P. ecklonii can be scientifically justified by a range of biological activities, demonstrated by isolated secondary metabolites. These bioactivities showcase the potential of this species in the development of economically important active pharmaceutical ingredients, particularly in anticancer therapy.
Collapse
Affiliation(s)
- Ana Ribeirinha Antão
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Gabrielle Bangay
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Eva María Domínguez-Martín
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Ana María Díaz-Lanza
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Patrícia Ríjo
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
12
|
Ntungwe E, Domínguez-Martín EM, Teodósio C, Teixidó-Trujillo S, Armas Capote N, Saraiva L, Díaz-Lanza AM, Duarte N, Rijo P. Preliminary Biological Activity Screening of Plectranthus spp. Extracts for the Search of Anticancer Lead Molecules. Pharmaceuticals (Basel) 2021; 14:ph14050402. [PMID: 33922685 PMCID: PMC8146581 DOI: 10.3390/ph14050402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plectranthus species (Lamiaceae) have been employed in traditional medicine and this is now validated by the presence of bioactive abietane-type diterpenoids. Herein, sixteen Plectranthus acetonic extracts were prepared by ultrasound-assisted extraction and their biological activity was screened. The antimicrobial activity of each extract was screened against yeasts, and Gram-positive and Gram-negative bacteria. The P. hadiensis and P. mutabilis extracts possessed significant activity against Staphylococcus aureus and Candida albicans (microdilution method). Moreover, all extracts showed antioxidant activity using the DPPH method, with P. hadiensis and P. mutabilis extracts having the highest scavenging activities. Selected by the Artemia salina model, P. hadiensis and P.ciliatus possessed low micromolar anti-proliferative activities in human colon, breast, and lung cancer cell lines. Furthermore, the most bioactive extract of P. hadiensis leaves and the known abietane diterpene, 7α-acetoxy-6β-hydroxyroyleanone isolated from this plant, were tested against the aggressive type triple negative breast cancer (MDA-MB-231S). P. hadiensis extract reduced the viability of MDA-MB-231S cancer cell line cells, showing an IC50 value of 25.6 µg/mL. The IC50 value of 7α-acetoxy-6β-hydroxyroyleanone was 5.5 µM (2.15 µg/mL), suggesting that this lead molecule is a potential starting tool for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Epole Ntungwe
- CBIOS—Universidade Lusófona Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (E.M.D.-M.); (C.T.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100—Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Eva María Domínguez-Martín
- CBIOS—Universidade Lusófona Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (E.M.D.-M.); (C.T.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100—Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Catarina Teodósio
- CBIOS—Universidade Lusófona Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (E.M.D.-M.); (C.T.)
| | - Silvia Teixidó-Trujillo
- Centro Atlántico del Medicamento S.A., Avenida Trinidad 61, 7ª Planta, Torre Agustín Arévalo, 38204 La Laguna, Tenerife, Spain; (S.T.-T.); (N.A.C.)
| | - Natalia Armas Capote
- Centro Atlántico del Medicamento S.A., Avenida Trinidad 61, 7ª Planta, Torre Agustín Arévalo, 38204 La Laguna, Tenerife, Spain; (S.T.-T.); (N.A.C.)
| | - Lucilia Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal;
| | - Ana María Díaz-Lanza
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra. A2, Km 33.100—Campus Universitario, 28805 Alcalá de Henares, Spain;
| | - Noélia Duarte
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Patrícia Rijo
- CBIOS—Universidade Lusófona Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.N.); (E.M.D.-M.); (C.T.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence:
| |
Collapse
|