1
|
Bernardo LB, Vieira LA, Borges CVN, Buitrago PAG, Kuča K, França TCC, Cavalcante SFA, Sousa RB, Lima ALS, Kitagawa DAS. In silico studies and in vitro evaluation of isatin-pyridine oxime hybrids as novel reactivators of acetylcholinesterase inhibited by an A-230 surrogate. Arch Toxicol 2025; 99:2225-2228. [PMID: 40035846 DOI: 10.1007/s00204-025-03976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/29/2025] [Indexed: 03/06/2025]
Abstract
Recent events involving nerve agents of the A-Series, a once elusive class of chemical warfare agents, have provoked a great concern in the international community. In this paper, continuing our research efforts in Medicinal Chemistry at the Brazilian Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) (an OPCW-designated Laboratory for environmental samples), we explore ANMP, an A-230 surrogate, in the search for new treatment options for intoxications caused by these chemicals. Five isatin-pyridine oxime hybrids were evaluated as acetylcholinesterase (AChE) reactivators using a modified Ellman's assay. Our results indicate that monocationic hybrids with five methylene units, as well as its oxa-analog, are promising compounds for the design of new AChE reactivators.
Collapse
Affiliation(s)
- Leandro B Bernardo
- Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro-RJ, 22290-270, Brazil.
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (Ctex), Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil.
| | - Leandro A Vieira
- Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro-RJ, 22290-270, Brazil
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Praca General Tiburcio, 80, 22290-270, Rio de Janeiro, Brazil
| | - Caio V N Borges
- Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro-RJ, 22290-270, Brazil
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (Ctex), Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil
| | - Pedro A G Buitrago
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (Ctex), Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil
| | - Kamil Kuča
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50003, Hradec Kralove, Czech Republic
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
- Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 70800, Ostrava-Poruba, Ostrava, Czech Republic
| | - Tanos C C França
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Praca General Tiburcio, 80, 22290-270, Rio de Janeiro, Brazil
| | - Samir F A Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (Ctex), Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil
| | - Roberto B Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (Ctex), Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil
| | - Antônio L S Lima
- Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro-RJ, 22290-270, Brazil
| | - Daniel A S Kitagawa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (Ctex), Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil
- Agency for Management and Technological Innovation (AGITEC), Brazilian Army Technological Center, Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil
| |
Collapse
|
2
|
Shu VA, Eni DB, Ntie-Kang F. A survey of isatin hybrids and their biological properties. Mol Divers 2025; 29:1737-1760. [PMID: 38833124 PMCID: PMC11909063 DOI: 10.1007/s11030-024-10883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The emergence of diverse infections worldwide, which is a serious global threat to human existence, necessitates the urgent development of novel therapeutic candidates that can combat these diseases with efficacy. Molecular hybridization has been established as an efficient technique in designing bioactive molecules capable of fighting infections. Isatin, a core nucleus of an array of compounds with diverse biological properties can be modified at different positions leading to the creation of novel drug targets, is an active area of medicinal chemistry. This review containing published articles from 2005 to 2022 highlights isatin hybrids which have been synthesized and reported in the literature alongside a discussion on their biological properties. The enriched structure-activity relationship studies discussed provides insights for the rational design of novel isatin hybrids with tailored biological properties as effective therapeutic candidates inspired by nature.
Collapse
Affiliation(s)
- Vanessa Asoh Shu
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon.
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
3
|
Bernardo LB, Borges CVN, Buitrago PAG, Kuča K, Cavalcante SFA, Sousa RB, Lima ALS, Kitagawa DAS. Synthesis and in vitro assessment of the reactivation profile of clinically available oximes on the acetylcholinesterase model inhibited by A-230 nerve agent surrogate. Arch Toxicol 2024; 98:3397-3407. [PMID: 39004640 DOI: 10.1007/s00204-024-03821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The risk of the use of toxic chemicals for unlawful acts has been a matter of concern for different governments and multilateral agencies. The Organisation for the Prohibition of Chemical Weapons (OPCW), which oversees the implementation of the Chemical Weapons Convention (CWC), considering recent events employing chemical warfare agents as means of assassination, has recently included in the CWC "Annex on Chemicals" some organophosphorus compounds that are regarded as acting in a similar fashion to the classical G- and V-series of nerve agents, inhibiting the pivotal enzyme acetylcholinesterase. Therefore, knowledge of the activity of the pyridinium oximes, the sole class of clinically available acetylcholinesterase reactivators to date, is plainly justified. In this paper, continuing our research efforts in medicinal chemistry on this class of toxic chemicals, we synthesized an A-230 nerve agent surrogate and applied a modified Ellman's assay to evaluate its ability to inhibit our enzymatic model, acetylcholinesterase from Electrophorus eel, and if the clinically available antidotes are able to rescue the enzyme activity for the purpose of relating the findings to the previously disclosed in silico data for the authentic nerve agent and other studies with similar A-series surrogates. Our experimental data indicates that pralidoxime is the most efficient compound for reactivating acetylcholinesterase inhibited by A-230 surrogate, which is the opposite of the in silico data previously disclosed.
Collapse
Affiliation(s)
- Leandro B Bernardo
- Instituto Militar de Engenharia (IME), Praça General Tibúrcio 80, Rio de Janeiro, RJ, 22290-270, Brazil.
- Instituto de Defesa Química, Biológica, Radiológica e Nuclear (IDQBRN), Centro Tecnológico do Exército (CTEx), Avenida das Américas 28705, Área 4, Rio de Janeiro, RJ, 23020-470, Brazil.
| | - Caio V N Borges
- Instituto Militar de Engenharia (IME), Praça General Tibúrcio 80, Rio de Janeiro, RJ, 22290-270, Brazil
- Instituto de Defesa Química, Biológica, Radiológica e Nuclear (IDQBRN), Centro Tecnológico do Exército (CTEx), Avenida das Américas 28705, Área 4, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Pedro A G Buitrago
- Instituto de Defesa Química, Biológica, Radiológica e Nuclear (IDQBRN), Centro Tecnológico do Exército (CTEx), Avenida das Américas 28705, Área 4, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Samir F A Cavalcante
- Instituto de Defesa Química, Biológica, Radiológica e Nuclear (IDQBRN), Centro Tecnológico do Exército (CTEx), Avenida das Américas 28705, Área 4, Rio de Janeiro, RJ, 23020-470, Brazil
| | - Roberto B Sousa
- Instituto Militar de Engenharia (IME), Praça General Tibúrcio 80, Rio de Janeiro, RJ, 22290-270, Brazil
| | - Antônio L S Lima
- Instituto Militar de Engenharia (IME), Praça General Tibúrcio 80, Rio de Janeiro, RJ, 22290-270, Brazil.
- Instituto de Defesa Química, Biológica, Radiológica e Nuclear (IDQBRN), Centro Tecnológico do Exército (CTEx), Avenida das Américas 28705, Área 4, Rio de Janeiro, RJ, 23020-470, Brazil.
| | - Daniel A S Kitagawa
- Instituto Militar de Engenharia (IME), Praça General Tibúrcio 80, Rio de Janeiro, RJ, 22290-270, Brazil.
- Instituto de Defesa Química, Biológica, Radiológica e Nuclear (IDQBRN), Centro Tecnológico do Exército (CTEx), Avenida das Américas 28705, Área 4, Rio de Janeiro, RJ, 23020-470, Brazil.
| |
Collapse
|
4
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
5
|
Xiang R, Wang S, Liao P, Xie F, Kang J, Li S, Xian J, Guo L, Li G. Electrocatalytic Synthesis of Pyridine Oximes using in Situ Generated NH 2 OH from NO species on Nanofiber Membranes Derived from NH 2 -MIL-53(Al). Angew Chem Int Ed Engl 2023; 62:e202312239. [PMID: 37728507 DOI: 10.1002/anie.202312239] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
Pyridine oximes produced from aldehyde or ketone with hydroxylamine (NH2 OH) have been widely applied in pharmaceutics, enzymatic and sterilization. However, the important raw material NH2 OH exhibits corrosive and unstable properties, leading to substantial energy consumption during storage and transportation. Herein, this work presents a novel method for directly synthesizing highly valuable pyridine oximes using in situ generated NH2 OH from electrocatalytic NO reduction with well-design nanofiber membranes (Al-NFM) derived from NH2 -MIL-53(Al). Particularly, 2-pyridinealdoxime, the precursor of antidote pralidoxime (2-PAM) for nerve agents suffering from scarcity and high cost, was achieved with a Faraday efficiency up to 49.8 % and a yield of 92.1 %, attributing to the high selectivity of NH2 OH production on Al-NFM, further easily reacted with iodomethane to produce 2-PAM. This study proposes a creative approach, having wide universality for synthesizing pyridine and other oximes with a range of functional groups, which not only facilitates the conversion of exhaust gas (NO) and waste water (NO2 - ) into valuable chemicals especially NH2 OH production and in situ utilization through electrochemistry, but also holds significant potential for synthesis of neuro detoxifying drugs to humanity security.
Collapse
Affiliation(s)
- Runan Xiang
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shihan Wang
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peisen Liao
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-Sen University, No.135, Xingangxi Road, Guangzhou, 510275, China
| | - Jiawei Kang
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Suisheng Li
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Xian
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Linna Guo
- Instrumental Analysis & Research Center, Sun Yat-Sen University, No.135, Xingangxi Road, Guangzhou, 510275, China
| | - Guangqin Li
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Kongkaew N, Hengphasatporn K, Injongkol Y, Mee-Udorn P, Shi L, Mahalapbutr P, Maitarad P, Harada R, Shigeta Y, Rungrotmongkol T, Vangnai AS. Design of electron-donating group substituted 2-PAM analogs as antidotes for organophosphate insecticide poisoning. RSC Adv 2023; 13:32266-32275. [PMID: 37928857 PMCID: PMC10620644 DOI: 10.1039/d3ra03087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
The use of organophosphate (OPs) pesticides is widespread in agriculture and horticulture, but these chemicals can be lethal to humans, causing fatalities and deaths each year. The inhibition of acetylcholinesterase (AChE) by OPs leads to the overstimulation of cholinergic receptors, ultimately resulting in respiratory arrest, seizures, and death. Although 2-pralidoxime (2-PAM) is the FDA-approved drug for treating OP poisoning, there is difficulty in blood-brain barrier permeation. To address this issue, we designed and evaluated a series of 2-PAM analogs by substituting electron-donating groups on the para and/or ortho positions of the pyridinium core using in silico techniques. Our PCM-ONIOM2 (MP2/6-31G*:PM7//B3LYP/6-31G*:UFF) binding energy results demonstrated that 13 compounds exhibited higher binding energy than 2-PAM. The analog with phenyl and methyl groups substituted on the para and ortho positions, respectively, showed the most favorable binding characteristics, with aromatic residues in the active site (Y124, W286, F297, W338, and Y341) and the catalytic residue S203 covalently bonding with paraoxon. The results of DS-MD simulation revealed a highly favorable apical conformation of the potent analog, which has the potential to enhance reactivation of AChE. Importantly, newly designed compound demonstrated appropriate drug-likeness properties and blood-brain barrier penetration. These results provide a rational guide for developing new antidotes to treat organophosphate insecticide toxicity.
Collapse
Affiliation(s)
- Nalinee Kongkaew
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yuwanda Injongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| | - Pitchayathida Mee-Udorn
- National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park Pathumthani 12120 Thailand
| | - Liyi Shi
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University Shanghai 200444 China
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Alisa S Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
7
|
Kitagawa DAS, Dos Santos MC, Kuča K, França TCC, Cavalcante SFDA. In vitro comparison of the acetylcholinesterase inhibition caused by V- and A-series nerve agents' surrogates. Chem Biol Interact 2023; 383:110678. [PMID: 37595776 DOI: 10.1016/j.cbi.2023.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Nerve agents (NA) pose as a great risk in the modern world. NA from the V-series, such as VX, are currently recognized as the most toxic among those compounds. However, the emergence of new classes of toxicants recently included in the Chemical Weapons Convention (CWC), such as the A-series NA, a class of organophosphorus compounds related to phosphoramidates, pose a new source of concern due to the lack of information. In order advance in the investigation on the toxicity of such toxic chemicals, we performed in vitro studies to compare representatives of the V- and A-series using affordable surrogates. Results suggest a similar inhibition potency between both agents.
Collapse
Affiliation(s)
- Daniel A S Kitagawa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, RJ, Brazil; Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Rio de Janeiro, Brazil.
| | - Marcelo C Dos Santos
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Rio de Janeiro, Brazil.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Tanos C C França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Rio de Janeiro, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| | - Samir F de A Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, RJ, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic.
| |
Collapse
|
8
|
Li Y, Gao X, Fang Y, Cui B, Shen Y. Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Santos MC, Botelho FD, Gonçalves AS, Kitagawa DAS, Borges CVN, Carvalho-Silva T, Bernardo LB, Ferreira CN, Rodrigues RB, Ferreira Neto DC, Nepovimova E, Kuča K, LaPlante SR, Lima ALS, França TCC, Cavalcante SFA. Are the current commercially available oximes capable of reactivating acetylcholinesterase inhibited by the nerve agents of the A-series? Arch Toxicol 2022; 96:2559-2572. [PMID: 35666269 DOI: 10.1007/s00204-022-03316-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
The misuse of novichok agents in assassination attempts has been reported in the international media since 2018. These relatively new class of neurotoxic agents is claimed to be more toxic than the agents of the G and V series and so far, there is no report yet in literature about potential antidotes against them. To shed some light into this issue, we report here the design and synthesis of NTMGMP, a surrogate of A-242 and also the first surrogate of a novichok agent useful for experimental evaluation of antidotes. Furthermore, the efficiency of the current commercial oximes to reactivate NTMGMP-inhibited acetylcholinesterase (AChE) was evaluated. The Ellman test was used to confirm the complete inhibition of AChE, and to compare the subsequent rates of reactivation in vitro as well as to evaluate aging. In parallel, molecular docking, molecular dynamics and MM-PBSA studies were performed on a computational model of the human AChE (HssAChE)/NTMGMP complex to assess the reactivation performances of the commercial oximes in silico. Experimental and theoretical studies matched the exact hierarchy of efficiency and pointed to trimedoxime as the most promising commercial oxime for reactivation of AChE inhibited by A-242.
Collapse
Affiliation(s)
- Marcelo C Santos
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Fernanda D Botelho
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Arlan S Gonçalves
- Federal Institute of Education, Science and Technology of Espírito Santo - Units Vila Velha and Vitória, Vitória, ES, Brazil.,Federal University of Espírito Santo, Unit Goiabeiras, Vitória, ES, Brazil
| | - Daniel A S Kitagawa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, Brazil
| | - Caio V N Borges
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, Brazil.,Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Taynara Carvalho-Silva
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, Brazil.,Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Leandro B Bernardo
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, Brazil.,Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Cíntia N Ferreira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, Brazil
| | - Rafael B Rodrigues
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, Brazil
| | - Denise C Ferreira Neto
- Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Steven R LaPlante
- Université de Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - Antonio L S Lima
- Chemical Engineering Department, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Tanos C C França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic. .,Université de Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada.
| | - Samir F A Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Rio de Janeiro, Brazil. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Peng W, Wang T, Liang XR, Yang YS, Wang QZ, Cheng HF, Peng YK, Ding F. Characterizing the potentially neuronal acetylcholinesterase reactivity toward chiral pyraclofos: Enantioselective insights from spectroscopy, in silico docking, molecular dynamics simulation and per-residue energy decomposition studies. J Mol Graph Model 2021; 110:108069. [PMID: 34773872 DOI: 10.1016/j.jmgm.2021.108069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/20/2022]
Abstract
Chiral organophosphorus agents are distributed ubiquitously in the environment, but the neuroactivity of these asymmetric chemicals to humans remains uncertain. This scenario was to explore the stereoselective neurobiological response of human acetylcholinesterase (AChE) to chiral pyraclofos at the enantiomeric scale, and then decipher the microscopic basis of enantioselective neurotoxicity of pyraclofos enantiomers. The results indicated that (R)-/(S)-pyraclofos can form the bioconjugates with AChE with a stoichiometric ratio of 1:1, but the neuronal affinity of (R)-pyraclofos (K = 6.31 × 104 M-1) with AChE was larger than that of (S)-pyraclofos (K = 1.86 × 104 M-1), and significant enantioselectivity was existed in the biochemical reaction. The modes of neurobiological action revealed that pyraclofos enantiomers were situated at the substrate binding domain, and the strength of the overall noncovalent bonds between (S)-pyraclofos and the residues was weaker than that of (R)-pyraclofos, resulting in the high inhibitory effect of (R)-pyraclofos toward the activity of AChE. Dynamic enantioselective biointeractions illustrated that the intervention of inherent conformational flexibility in the AChE-(R)-pyraclofos was greater than that of the AChE-(S)-pyraclofos, which arises from the big spatial displacement and the conformational flip of the binding domain composed of the residues Thr-64~Asn-89, Gly-122~Asp-134, and Thr-436~Tyr-449. Energy decomposition exhibited that the Gibbs free energies of the AChE-(R)-/(S)-pyraclofos were ΔG° = -37.4/-30.2 kJ mol-1, respectively, and the disparity comes from the electrostatic energy during the stereoselective neurochemical reactions. Quantitative conformational analysis further confirmed the atomic-scale computational chemistry conclusions, and the perturbation of (S)-pyraclofos on the AChE's ordered conformation was lower than that of (R)-pyraclofos, which is germane to the interaction energies of the crucial residues, e.g. Tyr-124, Tyr-337, Asp-74, Trp-86, and Tyr-119. Evidently, this attempt will contribute mechanistic information to uncovering the neurobiological effects of chiral organophosphates on the body.
Collapse
Affiliation(s)
- Wei Peng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiang-Rong Liang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yu-Sen Yang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hong-Fei Cheng
- School of Earth Science and Resources, Chang'an University, Xi'an, 710054, China
| | - Yu-Kui Peng
- Xining Center for Agricultural Product Quality and Safety Testing, Xining, 810016, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|