1
|
Suksai M, Romero R, Bosco M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gudicha DW, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Grossman LI, Aras S, Chaiworapongsa T. A mitochondrial regulator protein, MNRR1, is elevated in the maternal blood of women with preeclampsia. J Matern Fetal Neonatal Med 2024; 37:2297158. [PMID: 38220225 DOI: 10.1080/14767058.2023.2297158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Preeclampsia, one of the most serious obstetric complications, is a heterogenous disorder resulting from different pathologic processes. However, placental oxidative stress and an anti-angiogenic state play a crucial role. Mitochondria are a major source of cellular reactive oxygen species. Abnormalities in mitochondrial structures, proteins, and functions have been observed in the placentae of patients with preeclampsia, thus mitochondrial dysfunction has been implicated in the mechanism of the disease. Mitochondrial nuclear retrograde regulator 1 (MNRR1) is a newly characterized bi-organellar protein with pleiotropic functions. In the mitochondria, this protein regulates cytochrome c oxidase activity and reactive oxygen species production, whereas in the nucleus, it regulates the transcription of a number of genes including response to tissue hypoxia and inflammatory signals. Since MNRR1 expression changes in response to hypoxia and to an inflammatory signal, MNRR1 could be a part of mitochondrial dysfunction and involved in the pathologic process of preeclampsia. This study aimed to determine whether the plasma MNRR1 concentration of women with preeclampsia differed from that of normal pregnant women. METHODS This retrospective case-control study included 97 women with preeclampsia, stratified by gestational age at delivery into early (<34 weeks, n = 40) and late (≥34 weeks, n = 57) preeclampsia and by the presence or absence of placental lesions consistent with maternal vascular malperfusion (MVM), the histologic counterpart of an anti-angiogenic state. Women with an uncomplicated pregnancy at various gestational ages who delivered at term served as controls (n = 80) and were further stratified into early (n = 25) and late (n = 55) controls according to gestational age at venipuncture. Maternal plasma MNRR1 concentrations were determined by an enzyme-linked immunosorbent assay. RESULTS 1) Women with preeclampsia at the time of diagnosis (either early or late disease) had a significantly higher median (interquartile range, IQR) plasma MNRR1 concentration than the controls [early preeclampsia: 1632 (924-2926) pg/mL vs. 630 (448-4002) pg/mL, p = .026, and late preeclampsia: 1833 (1441-5534) pg/mL vs. 910 (526-6178) pg/mL, p = .021]. Among women with early preeclampsia, those with MVM lesions in the placenta had the highest median (IQR) plasma MNRR1 concentration among the three groups [with MVM: 2066 (1070-3188) pg/mL vs. without MVM: 888 (812-1781) pg/mL, p = .03; and with MVM vs. control: 630 (448-4002) pg/mL, p = .04]. There was no significant difference in the median plasma MNRR1 concentration between women with early preeclampsia without MVM lesions and those with an uncomplicated pregnancy (p = .3). By contrast, women with late preeclampsia, regardless of MVM lesions, had a significantly higher median (IQR) plasma MNRR1 concentration than women in the control group [with MVM: 1609 (1392-3135) pg/mL vs. control: 910 (526-6178), p = .045; and without MVM: 2023 (1578-8936) pg/mL vs. control, p = .01]. CONCLUSIONS MNRR1, a mitochondrial regulator protein, is elevated in the maternal plasma of women with preeclampsia (both early and late) at the time of diagnosis. These findings may reflect some degree of mitochondrial dysfunction, intravascular inflammation, or other unknown pathologic processes that characterize this obstetrical syndrome.
Collapse
Affiliation(s)
- Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Lawrence I Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Grismaldo R A, Luévano-Martínez LA, Reyes M, García-Márquez G, García-Rivas G, Sobrevia L. Placental mitochondrial impairment and its association with maternal metabolic dysfunction. J Physiol 2024. [PMID: 39116002 DOI: 10.1113/jp285935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The placenta plays an essential role in pregnancy, leading to proper fetal development and growth. As an organ with multiple physiological functions for both mother and fetus, it is a highly energetic and metabolically demanding tissue. Mitochondrial physiology plays a crucial role in the metabolism of this organ and thus any alteration leading to mitochondrial dysfunction has a severe outcome in the development of the fetus. Pregnancy-related pathological states with a mitochondrial dysfunction outcome include preeclampsia and gestational diabetes mellitus. In this review, we address the role of mitochondrial morphology, metabolism and physiology of the placenta during pregnancy, highlighting the roles of the cytotrophoblast and syncytiotrophoblast. We also describe the relationship between preeclampsia, gestational diabetes, gestational diabesity and pre-pregnancy maternal obesity with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Adriana Grismaldo R
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Luévano-Martínez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Monserrat Reyes
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Grecia García-Márquez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Luis Sobrevia
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
3
|
Mathyk BA, Tabetah M, Karim R, Zaksas V, Kim J, Anu RI, Muratani M, Tasoula A, Singh RS, Chen YK, Overbey E, Park J, Cope H, Fazelinia H, Povero D, Borg J, Klotz RV, Yu M, Young SL, Mason CE, Szewczyk N, St Clair RM, Karouia F, Beheshti A. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen. Commun Biol 2024; 7:692. [PMID: 38862620 PMCID: PMC11166981 DOI: 10.1038/s42003-023-05213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 06/13/2024] Open
Abstract
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes were most prominent in the liver, where we observed inhibition of insulin and estrogen receptor signaling with concomitant hepatic insulin resistance and steatosis. Based on the metabolic demand, metabolic pathways mediated by insulin and estrogen vary among muscles, specifically between the soleus and extensor digitorum longus. In humans, spaceflight induced changes in insulin and estrogen related genes and pathways. Pathway analysis demonstrated spaceflight induced changes in insulin resistance, estrogen signaling, stress response, and viral infection. These data strongly suggest the need for further research on the metabolic and reproductive endocrinologic effects of space travel, if we are to become a successful interplanetary species.
Collapse
Affiliation(s)
- Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rashid Karim
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45220, USA
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - R I Anu
- Department of Cancer Biology & Therapeutics, Precision Oncology and Multi-omics clinic, Genetic counseling clinic. Department of Clinical Biochemistry, MVR Cancer Centre and Research Institute, Calicut, India
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Alexia Tasoula
- Department of Life Science Engineering, FH Technikum, Vienna, Austria
| | | | - Yen-Kai Chen
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Eliah Overbey
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jiwoon Park
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics and Proteomics Core Facility, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Davide Povero
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, Msida, MSD2090, Malta
| | - Remi V Klotz
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Yu
- Department of Stem Cell Biology & Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven L Young
- Division of Reproductive Endocrinology and Infertility, Duke School of Medicine, Durham, NC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics and World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nathaniel Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Riley M St Clair
- Department of Life Sciences, Quest University, Squamish, BC, Canada
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
4
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. An integral role of mitochondrial function in the pathophysiology of preeclampsia. Mol Biol Rep 2024; 51:330. [PMID: 38393449 DOI: 10.1007/s11033-024-09285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Preeclampsia (PE) is associated with high maternal and perinatal morbidity and mortality. The development of effective treatment strategies remains a major challenge due to the limited understanding of the pathogenesis. In this review, we summarize the current understanding of PE research, focusing on the molecular basis of mitochondrial function in normal and PE placentas, and discuss perspectives on future research directions. Mitochondria integrate numerous physiological processes such as energy production, cellular redox homeostasis, mitochondrial dynamics, and mitophagy, a selective autophagic clearance of damaged or dysfunctional mitochondria. Normal placental mitochondria have evolved innovative survival strategies to cope with uncertain environments (e.g., hypoxia and nutrient starvation). Cytotrophoblasts, extravillous trophoblast cells, and syncytiotrophoblasts all have distinct mitochondrial morphology and function. Recent advances in molecular studies on the spatial and temporal changes in normal mitochondrial function are providing valuable insight into PE pathogenesis. In PE placentas, hypoxia-mediated mitochondrial fission may induce activation of mitophagy machinery, leading to increased mitochondrial fragmentation and placental tissue damage over time. Repair mechanisms in mitochondrial function restore placental function, but disruption of compensatory mechanisms can induce apoptotic death of trophoblast cells. Additionally, molecular markers associated with repair or compensatory mechanisms that may influence the development and progression of PE are beginning to be identified. However, contradictory results have been obtained regarding some of the molecules that control mitochondrial biogenesis, dynamics, and mitophagy in PE placentas. In conclusion, understanding how the mitochondrial morphology and function influence cell fate decisions of trophoblast cells is an important issue in normal as well as pathological placentation biology. Research focusing on mitochondrial function will become increasingly important for elucidating the pathogenesis and effective treatment strategies of PE.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara, 634- 0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
| |
Collapse
|
5
|
Wu Y, Li M, Ying H, Gu Y, Zhu Y, Gu Y, Huang L. Mitochondrial quality control alterations and placenta-related disorders. Front Physiol 2024; 15:1344951. [PMID: 38390447 PMCID: PMC10883312 DOI: 10.3389/fphys.2024.1344951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Mitochondria are ubiquitous in eukaryotic cells. Normal maintenance of function is the premise and basis for various physiological activities. Mitochondrial dysfunction is commonly observed in a wide range of pathological conditions, such as neurodegenerative, metabolic, cardiovascular, and various diseases related to foetal growth and development. The placenta is a highly energy-dependent organ that acts as an intermediary between the mother and foetus and functions to maintain foetal growth and development. Recent studies have demonstrated that mitochondrial dysfunction is associated with placental disorders. Defects in mitochondrial quality control mechanisms may lead to preeclampsia and foetal growth restriction. In this review, we address the quality control mechanisms of mitochondria and the relevant pathologies of mitochondrial dysfunction in placenta-related diseases, such as preeclampsia and foetal growth restriction. This review also investigates the relation between mitochondrial dysfunction and placental disorders.
Collapse
Affiliation(s)
- Yamei Wu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Meng Li
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yunlong Zhu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Yanfang Gu
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| | - Lu Huang
- Wuxi Maternity and Child Healthcare Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Wuxi Clinical Medical College of Nanjing Medical University, Wuxi, China
| |
Collapse
|
6
|
Lekva T, Sundaram AYF, Roland MCP, Åsheim J, Michelsen AE, Norwitz ER, Aukrust P, Gilfillan GD, Ueland T. Platelet and mitochondrial RNA is decreased in plasma-derived extracellular vesicles in women with preeclampsia-an exploratory study. BMC Med 2023; 21:458. [PMID: 37996819 PMCID: PMC10666366 DOI: 10.1186/s12916-023-03178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) are increased in preeclampsia (PE) and are associated with severity and progression. We examined in this exploratory cohort study if the mRNAs and long noncoding RNAs (lncRNAs) in plasma-derived EVs were dysregulated in PE compared to normal pregnancy and display different temporal patterns during gestation. METHODS We isolated EVs from plasma at weeks 22-24 and 36-38 in women with and without PE (n=7 in each group) and performed RNA-seq, focusing on mRNAs and lncRNAs. We validated highly expressed mitochondrial and platelet-derived RNAs discovered from central pathways in 60 women with/without PE. We examined further one of the regulated RNAs, noncoding mitochondrially encoded tRNA alanine (MT-TA), in leukocytes and plasma to investigate its biomarker potential and association with clinical markers of PE. RESULTS We found abundant levels of platelet-derived and mitochondrial RNAs in EVs. Expression of these RNAs were decreased and lncRNAs increased in EVs from PE compared to without PE. These findings were further validated by qPCR for mitochondrial RNAs MT-TA, MT-ND2, MT-CYB and platelet-derived RNAs PPBP, PF4, CLU in EVs. Decreased expression of mitochondrial tRNA MT-TA in leukocytes at 22-24 weeks was strongly associated with the subsequent development of PE. CONCLUSIONS Platelet-derived and mitochondrial RNA were highly expressed in plasma EVs and were decreased in EVs isolated from women with PE compared to without PE. LncRNAs were mostly increased in PE. The MT-TA in leukocytes may be a useful biomarker for prediction and/or early detection of PE.
Collapse
Affiliation(s)
- Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Arvind Y Fm Sundaram
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - June Åsheim
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Gregor D Gilfillan
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
7
|
Pan M, Zhou J, Wang J, Cao W, Li L, Wang L. The role of placental aging in adverse pregnancy outcomes: A mitochondrial perspective. Life Sci 2023; 329:121924. [PMID: 37429418 DOI: 10.1016/j.lfs.2023.121924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Premature placental aging is associated with placental insufficiency, which reduces the functional capacity of the placenta, leading to adverse pregnancy outcomes. Placental mitochondria are vital organelles that provide energy and play essential roles in placental development and functional maintenance. In response to oxidative stress, damage, and senescence, an adaptive response is induced to selectively remove mitochondria through the mitochondrial equivalent of autophagy. However, adaptation can be disrupted when mitochondrial abnormalities or dysfunctions persist. This review focuses on the adaptation and transformation of mitochondria during pregnancy. These changes modify placental function throughout pregnancy and can cause complications. We discuss the relationship between placental aging and adverse pregnancy outcomes from the perspective of mitochondria and potential approaches to improve abnormal pregnancy outcomes.
Collapse
Affiliation(s)
- Meijun Pan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
8
|
Zhou J, Li L, Pan X, Wang J, Qi Q, Sun H, Li C, Wang L. The effect of a traditional Chinese quadri-combination therapy and its component quercetin on recurrent spontaneous abortion: A clinical trial, network pharmacology and experiments-based study. Front Pharmacol 2022; 13:965694. [PMID: 36339549 PMCID: PMC9626984 DOI: 10.3389/fphar.2022.965694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/28/2022] [Indexed: 08/02/2023] Open
Abstract
Objective: To explore the effect and mechanisms of a traditional Chinese quadri-combination therapy [Bushen, Yiqi, Lixue and Yangtai (BYLY)] in treating recurrent spontaneous abortion (RSA). Methods: A clinical trial was conducted to study the effect of BYLY on RSA. Pharmacological network analysis and UPLC-Q/TOF-mass spectrometry (MS) were applied to investigate the key active component in BYLY and potential targets. Cellular experiments based on former results were performed to examine the mechanism of BYLY in the treatment of RSA. Results: Four hundred and eighty participants enrolled in the clinical trial. The results showed that, compared with the use of BYLY or duphaston alone, a combination of duphaston and BYLY could decrease the early abortion rate in RSA (p < 0.001). Network pharmacological analysis indicated that BYLY contained 132 active components and 146 core targets, and the quercetin maybe the key effective component. In vitro experiments found that pretreatment of quercetin at the correct concentration (2 μM) prevented hypoxia-induced viability and proliferation reduction, and apoptosis and mitochondrial dysfunction. Furthermore, quercetin could modulate mitochondrial fission/fusion balance in trophoblasts, and specifically decrease the expression of Drp1 by regulating miR-34a-5p. Conclusion: BYLY could improve pregnancy outcomes of RSA, based on multi-components and multi-targets. The protective effect of quercetin on trophoblasts, through decreasing Drp1 expression via regulating miR-34a-5p, might be one possible effective mechanism.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
9
|
Çalışkan CS, Celik S, Avcı B. Is afamin a potential early biomarker for subsequent development of preeclampsia? A nested case-control study. J Matern Fetal Neonatal Med 2020; 34:2006-2011. [PMID: 33028116 DOI: 10.1080/14767058.2020.1818201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study is to determine if the second-trimester serum afamin is a reasonable predictor of preeclampsia (PE). METHODS In this nested case-control study, all pregnant women were screened by second-trimester screening test between 15 and 20 weeks of gestation and serum samples were collected and stored at -80 °C for biochemical analysis. All available stored samples from pregnant women who subsequently developed PE were thawed and the concentrations of afamin in the serum were measured. Control cases, chosen randomly from the same cohort whose blood was collected and stored in the same period as with the study group, who did not develop PE. Afamin levels were expressed ng/mL. Logistic regression was used to calculate adjusted odds ratio (aORs) for the prediction of PE. RESULTS A total of 39 women with PE and 46 controls were studied. Afamin levels were found to be significantly higher during the second trimester in women who developed PE compared to the control group. Afamin, at a cut-off level of 96.2 ng/mL, the aORs for PE was 28.6 (95% CI: 7.458-110.193). After adjustment for BMI, age, smoking, the aORs for PE was 65.6 (95% CI: 11.6-371.4; p = .001). CONCLUSION High levels of afamin in the early weeks of gestation in patients going on to develop PE later may be promising as a potential marker to predict PE in the first and second trimesters.
Collapse
Affiliation(s)
| | | | - Bahattin Avcı
- Biochemistry, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
10
|
Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome with multisystem involvement which leads to foetal, neonatal, and maternal morbidity and mortality. This syndrome is characterized by the onset of clinical signs and symptoms and delivery before (early-onset preeclampsia, eoPE), or after (late-onset preeclampsia, loPE), the 34 weeks of gestation. Preeclampsia is a mitochondrial disorder where its differential involvement in eoPE and loPE is unclear. Mitochondria regulate cell metabolism and are a significant source of reactive oxygen species (ROS). The syncytiotrophoblast in eoPE and loPE show altered mitochondrial structure and function resulting in ROS overproduction, oxidative stress, and cell damage and death. Mitochondrial dysfunction in eoPE may result from altered expression of several molecules, including dynamin-related protein 1 and mitofusins, compared with loPE where these factors are either reduced or unaltered. Equally, mitochondrial fusion/fission dynamics seem differentially modulated in eoPE and loPE. It is unclear whether the electron transport chain and oxidative phosphorylation are differentially altered in these two subgroups of preeclampsia. However, the activity of complex IV (cytochrome c oxidase) and the expression of essential proteins involved in the electron transport chain are reduced, leading to lower oxidative phosphorylation and mitochondrial respiration in the preeclamptic placenta. Interventional studies in patients with preeclampsia using the coenzyme Q10, a key molecule in the electron transport chain, suggest that agents that increase the antioxidative capacity of the placenta may be protective against preeclampsia development. In this review, the mitochondrial dysfunction in both eoPE and loPE is summarized. Therapeutic approaches are discussed in the context of contributing to the understanding of mitochondrial dysfunction in eoPE and loPE.
Collapse
|