1
|
Pan J, Zhan C, Yuan T, Gu W, Wang W, Sun Y, Chen L. Long noncoding RNA signatures in intrauterine infection/inflammation-induced lung injury: an integrative bioinformatics study. BMC Pulm Med 2023; 23:194. [PMID: 37280583 DOI: 10.1186/s12890-023-02505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Intrauterine infection/inflammation can result in fetal and neonatal lung injury. However, the biological mechanisms of intrauterine infection/inflammation on fetal and neonatal lung injury and development are poorly known. To date, there are no reliable biomarkers for improving intrauterine infection/inflammation-induced lung injury. METHODS An animal model of intrauterine infection/inflammation-induced lung injury was established with pregnant Sprague-Dawley rats inoculated with Escherichia coli suspension. The intrauterine inflammatory status was assessed through the histological examination of the placenta and uterus. A serial of histological examinations of the fetal and neonatal rats lung tissues were performed. The fetal and neonatal rat lung tissues were harvested for next generation sequencing at embryonic day 17 and postnatal day 3, respectively. Differentially expressed mRNAs and lncRNAs were identified by conducting high-throughput sequencing technique. The target genes of identified differentially expressed lncRNAs were analyzed. Homology analyses for important differentially expressed lncRNAs were performed. RESULTS The histopathological results showed inflammatory infiltration, impaired alveolar vesicular structure, less alveolar numbers, and thickened alveolar septa in fetal and neonatal rat lung tissues. Transmission electron micrographs revealed inflammatory cellular swelling associated with diffuse alveolar damage and less surfactant-storing lamellar bodies in alveolar epithelial type II cells. As compared with the control group, there were 432 differentially expressed lncRNAs at embryonic day 17 and 125 differentially expressed lncRNAs at postnatal day 3 in the intrauterine infection group. The distribution, expression level, and function of these lncRNAs were shown in the rat genome. LncRNA TCONS_00009865, lncRNA TCONS_00030049, lncRNA TCONS_00081686, lncRNA TCONS_00091647, lncRNA TCONS_00175309, lncRNA TCONS_00255085, lncRNA TCONS_00277162, and lncRNA TCONS_00157962 may play an important role in intrauterine infection/inflammation-induced lung injury. Fifty homologous sequences in Homo sapiens were also identified. CONCLUSIONS This study provides genome-wide identification of novel lncRNAs which may serve as potential diagnostic biomarkers and therapeutic targets for intrauterine infection/inflammation-induced lung injury.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Canyang Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Tianming Yuan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China.
| | - Weizhong Gu
- Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Weiyan Wang
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Yi Sun
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| | - Lihua Chen
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China
| |
Collapse
|
2
|
Liu X, Zhu H, Gao H, Tian X, Tan B, Su R. G s signaling pathway distinguishes hallucinogenic and nonhallucinogenic 5-HT 2AR agonists induced head twitch response in mice. Biochem Biophys Res Commun 2022; 598:20-25. [PMID: 35149433 DOI: 10.1016/j.bbrc.2022.01.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
Abstract
5- HT2A receptor is a member of the family A G-protein-coupled receptor. It is involved in many psychiatric disorders, such as depression, addiction and Parkinson's disease. 5-HT2AR targeted drugs play an important role in regulating cognition, memory, emotion and other physiological function by coupling G proteins, and their most notable function is stimulating the serotonergic hallucination. However, not all 5-HT2AR agonists exhibit hallucinogenic activity, such as lisuride. Molecular mechanisms of these different effects are not well illustrated. This study suggested that 5-HT2AR coupled both Gs and Gq protein under hallucinogenic agonists DOM and 25CN-NBOH stimulation, but nonhallucinogenic agonist lisuride and TBG only activates Gq signaling. Moreover, in head twitch response (HTR) model, we found that cAMP analogs 8-Bromo-cAMP and PDE4 inhibitor Rolipram could increase HTR, while Gs protein inhibitor Melittin could reduce HTR. Collectively, these results revealed that Gs signaling is a key signaling pathway that may distinguish hallucinogenic agonists and nonhallucinogenic agonists.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Huili Zhu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Huan Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China; School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xiangyun Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Bo Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|