1
|
Seid CA, Hiley AS, McCowin MF, Carvajal JI, Cha H, Ahyong ST, Ashford OS, Breedy O, Eernisse DJ, Goffredi SK, Hendrickx ME, Kocot KM, Mah CL, Miller AK, Mongiardino Koch N, Mooi R, O'Hara TD, Pleijel F, Stiller J, Tilic E, Valentich-Scott P, Warén A, Wicksten MK, Wilson NG, Cordes EE, Levin LA, Cortés J, Rouse GW. A faunal inventory of methane seeps on the Pacific margin of Costa Rica. Zookeys 2025; 1222:1-250. [PMID: 39877055 PMCID: PMC11770332 DOI: 10.3897/zookeys.1222.134385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 01/31/2025] Open
Abstract
The methane seeps on the Pacific margin of Costa Rica support extensive animal diversity and offer insights into deep-sea biogeography. During five expeditions between 2009 and 2019, we conducted intensive faunal sampling via 63 submersible dives to 11 localities at depths of 300-3600 m. Based on these expeditions and published literature, we compiled voucher specimens, images, and 274 newly published DNA sequences to present a taxonomic inventory of macrofaunal and megafaunal diversity with a focus on invertebrates. In total 488 morphospecies were identified, representing the highest number of distinct morphospecies published from a single seep or vent region to date. Of these, 131 are described species, at least 58 are undescribed species, and the remainder include some degree of taxonomic uncertainty, likely representing additional undescribed species. Of the described species, 38 are known only from the Costa Rica seeps and their vicinity. Fifteen range extensions are also reported for species known from Mexico, the Galápagos seamounts, Chile, and the western Pacific; as well as 16 new depth records and three new seep records for species known to occur at vents or organic falls. No single evolutionary narrative explains the patterns of biodiversity at these seeps, as even morphologically indistinguishable species can show different biogeographic affinities, biogeographic ranges, or depth ranges. The value of careful molecular taxonomy and comprehensive specimen-based regional inventories is emphasized for biodiversity research and monitoring.
Collapse
Affiliation(s)
- Charlotte A. Seid
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Avery S. Hiley
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Marina F. McCowin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - José I. Carvajal
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Harim Cha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Shane T. Ahyong
- Australian Museum, Sydney, New South Wales, AustraliaAustralian MuseumSydneyAustralia
- University of New South Wales, Kensington, New South Wales, AustraliaUniversity of New South WalesKensingtonAustralia
| | - Oliver S. Ashford
- Ocean Program, World Resources Institute, London, UKOcean Program, World Resources InstituteLondonUnited Kingdom
| | - Odalisca Breedy
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Douglas J. Eernisse
- California State University Fullerton, Fullerton, California, USACalifornia State University FullertonFullertonUnited States of America
| | - Shana K. Goffredi
- Occidental College, Los Angeles, California, USAOccidental CollegeLos AngelesUnited States of America
| | - Michel E. Hendrickx
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, MexicoUniversidad Nacional Autónoma de MéxicoMazatlánMexico
| | - Kevin M. Kocot
- University of Alabama, Tuscaloosa, Alabama, USAUniversity of AlabamaTuscaloosaUnited States of America
| | - Christopher L. Mah
- Smithsonian National Museum of Natural History, Washington, DC, USASmithsonian National Museum of Natural HistoryWashingtonUnited States of America
| | - Allison K. Miller
- University of Otago, Dunedin, New ZealandUniversity of OtagoDunedinNew Zealand
| | - Nicolás Mongiardino Koch
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Rich Mooi
- California Academy of Sciences, San Francisco, California, USACalifornia Academy of SciencesSan FranciscoUnited States of America
| | - Timothy D. O'Hara
- Museums Victoria, Melbourne, Victoria, AustraliaMuseums VictoriaMelbourneAustralia
| | - Fredrik Pleijel
- University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Josefin Stiller
- University of Copenhagen, Copenhagen, DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Ekin Tilic
- Senckenberg Research Institute and Natural History Museum, Frankfurt, GermanySenckenberg Research Institute and Natural History MuseumFrankfurtGermany
| | - Paul Valentich-Scott
- Santa Barbara Museum of Natural History, Santa Barbara, California, USASanta Barbara Museum of Natural HistorySanta BarbaraUnited States of America
| | - Anders Warén
- Swedish Museum of Natural History, Stockholm, SwedenSwedish Museum of Natural HistoryStockholmSweden
| | - Mary K. Wicksten
- Texas A&M University, College Station, Texas, USATexas A&M UniversityTexasUnited States of America
| | - Nerida G. Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, AustraliaWestern Australian MuseumWelshpoolAustralia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, AustraliaUniversity of Western AustraliaPerthAustralia
| | - Erik E. Cordes
- Temple University, Philadelphia, Pennsylvania, USATemple UniversityPhiladelphiaUnited States of America
| | - Lisa A. Levin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Jorge Cortés
- Universidad de Costa Rica, San José, Costa RicaUniversity of Costa RicaSan JoséCosta Rica
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USAUniversity of California San DiegoLa JollaUnited States of America
| |
Collapse
|
2
|
McCowin MF, Collins PC, Rouse GW. Updated phylogeny of Vestimentifera (Siboglinidae, Polychaeta, Annelida) based on mitochondrial genomes, with a new species. Mol Phylogenet Evol 2023; 187:107872. [PMID: 37451325 DOI: 10.1016/j.ympev.2023.107872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Siboglinid tubeworms are found at chemosynthetic environments worldwide and the Vestimentifera clade is particularly well known for their reliance on chemoautotrophic bacterial symbionts for nutrition. The mitochondrial genomes have been published for nine vestimentiferan species to date. This study provides new complete mitochondrial genomes for ten further Vestimentifera, including the first mitochondrial genomes sequenced for Alaysia spiralis, Arcovestia ivanovi, Lamellibrachia barhami, Lamellibrachia columna, Lamellibrachia donwalshi, and unnamed species of Alaysia and Oasisia. Phylogenetic analyses combining fifteen mitochondrial genes and the nuclear 18S rRNA gene recovered Lamellibrachia as sister to the remaining Vestimentifera and Riftia pachyptila as separate from the other vent-endemic taxa. Implications and auxiliary analyses regarding differing phylogenetic tree topologies, substitution saturation, ancestral state reconstruction, and divergence estimates are also discussed. Additionally, a new species of Alaysia is described from the Manus Basin.
Collapse
Affiliation(s)
- Marina F McCowin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | - Patrick C Collins
- Queen's University Belfast, Belfast, Co. Antrim, BT9 5DL, Northern Ireland
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA; South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Gunton LM, Kupriyanova EK, Alvestad T, Avery L, Blake JA, Biriukova O, Böggemann M, Borisova P, Budaeva N, Burghardt I, Capa M, Georgieva MN, Glasby CJ, Hsueh PW, Hutchings P, Jimi N, Kongsrud JA, Langeneck J, Meißner K, Murray A, Nikolic M, Paxton H, Ramos D, Schulze A, Sobczyk R, Watson C, Wiklund H, Wilson RS, Zhadan A, Zhang J. Annelids of the eastern Australian abyss collected by the 2017 RV 'Investigator' voyage. Zookeys 2021; 1020:1-198. [PMID: 33708002 PMCID: PMC7930015 DOI: 10.3897/zookeys.1020.57921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
In Australia, the deep-water (bathyal and abyssal) benthic invertebrate fauna is poorly known in comparison with that of shallow (subtidal and shelf) habitats. Benthic fauna from the deep eastern Australian margin was sampled systematically for the first time during 2017 RV 'Investigator' voyage 'Sampling the Abyss'. Box core, Brenke sledge, and beam trawl samples were collected at one-degree intervals from Tasmania, 42°S, to southern Queensland, 24°S, from 900 to 4800 m depth. Annelids collected were identified by taxonomic experts on individual families around the world. A complete list of all identified species is presented, accompanied with brief morphological diagnoses, taxonomic remarks, and colour images. A total of more than 6000 annelid specimens consisting of 50 families (47 Polychaeta, one Echiura, two Sipuncula) and 214 species were recovered. Twenty-seven species were given valid names, 45 were assigned the qualifier cf., 87 the qualifier sp., and 55 species were considered new to science. Geographical ranges of 16 morphospecies extended along the eastern Australian margin to the Great Australian Bight, South Australia; however, these ranges need to be confirmed with genetic data. This work providing critical baseline biodiversity data on an important group of benthic invertebrates from a virtually unknown region of the world's ocean will act as a springboard for future taxonomic and biogeographic studies in the area.
Collapse
Affiliation(s)
| | - Elena K. Kupriyanova
- Australian Museum Research Institute, Sydney, Australia
- Macquarie University, Sydney, Australia
| | - Tom Alvestad
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | | | - James A. Blake
- Aquatic Research & Consulting, Duxbury, Massachusetts, USA
| | - Olga Biriukova
- Museum and Art Gallery of the Northern Territory, Darwin, Australia
| | | | - Polina Borisova
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya Budaeva
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | | | - Maria Capa
- Department of Biology, University of the Balearic Islands, Palma, Spain
| | | | | | - Pan-Wen Hsueh
- Department of Life Sciences, National Chung Hsing University, Taichung City, China
| | - Pat Hutchings
- Australian Museum Research Institute, Sydney, Australia
- Macquarie University, Sydney, Australia
| | - Naoto Jimi
- National Institute of Polar Research, Tachikawa, Tokyo, Japan
| | - Jon A. Kongsrud
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | | | - Karin Meißner
- Forschungsinstitut Senckenberg, DZMB, Hamburg, Germany
| | - Anna Murray
- Australian Museum Research Institute, Sydney, Australia
| | | | - Hannelore Paxton
- Australian Museum Research Institute, Sydney, Australia
- Macquarie University, Sydney, Australia
| | | | - Anja Schulze
- Texas A&M University at Galveston, Galveston, TX, USA
| | - Robert Sobczyk
- Department of Zoology of Invertebrates and Hydrobiology, University of Lodz, Lodz, Poland
| | - Charlotte Watson
- Museum and Art Gallery of the Northern Territory, Darwin, Australia
| | - Helena Wiklund
- Natural History Museum, London, UK
- Gothenburg Global Biodiversity Centre and University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Zhadan
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Jinghuai Zhang
- South China Sea Environmental Monitoring Centre, State Oceanic Administration, Guangzhou, China
| |
Collapse
|
4
|
Wang W, Sui J, Kou Q, Li XZ. Review of the genus Loimia Malmgren, 1866 (Annelida, Terebellidae) from China seas with recognition of two new species based on integrative taxonomy. PeerJ 2020; 8:e9491. [PMID: 32742787 PMCID: PMC7369024 DOI: 10.7717/peerj.9491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Specimens of the genus Loimia (Annelida, Terebellidae) deposited in the Marine Biological Museum of the Chinese Academy of Sciences (MBMCAS) together with materials newly collected from China seas were examined. Based on morphological comparisons and molecular analysis, some specimens collected from the coasts of Shandong province and Guangxi province were confirmed as two new Loimia species respectively (Loimia borealis sp. n. and Loimia macrobranchia sp. n.). Morphologically, L. borealis sp. n. is distinguished from previously known species of this genus by having seven equal sized ventral shields, with length five times the width; this species was retrieved as sister to the clades of Loimia arboreaMoore, 1903 and Loimia banderaHutchings, 1990 in the phylogenetic tree, which was reconstructed based on mitochondrial COI gene. Loimia macrobranchia sp. n. differs from congeners by the large size of its first pair of branchiae with a thick main stem and about 18 dendritic branches arranged in two levels. A key to identifying Loimia species found in Chinese seas is given.
Collapse
Affiliation(s)
- Weina Wang
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jixing Sui
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qi Kou
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin-Zheng Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Stiller J, Tilic E, Rousset V, Pleijel F, Rouse GW. Spaghetti to a Tree: A Robust Phylogeny for Terebelliformia (Annelida) Based on Transcriptomes, Molecular and Morphological Data. BIOLOGY 2020; 9:E73. [PMID: 32268525 PMCID: PMC7236012 DOI: 10.3390/biology9040073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022]
Abstract
Terebelliformia-"spaghetti worms" and their allies-are speciose and ubiquitous marine annelids but our understanding of how their morphological and ecological diversity evolved is hampered by an uncertain delineation of lineages and their phylogenetic relationships. Here, we analyzed transcriptomes of 20 terebelliforms and an outgroup to build a robust phylogeny of the main lineages grounded on 12,674 orthologous genes. We then supplemented this backbone phylogeny with a denser sampling of 121 species using five genes and 90 morphological characters to elucidate fine-scale relationships. The monophyly of six major taxa was supported: Pectinariidae, Ampharetinae, Alvinellidae, Trichobranchidae, Terebellidae and Melinninae. The latter, traditionally a subfamily of Ampharetidae, was unexpectedly the sister to Terebellidae, and hence becomes Melinnidae, and Ampharetinae becomes Ampharetidae. We found no support for the recently proposed separation of Telothelepodidae, Polycirridae and Thelepodidae from Terebellidae. Telothelepodidae was nested within Thelepodinae and is accordingly made its junior synonym. Terebellidae contained the subfamily-ranked taxa Terebellinae and Thelepodinae. The placement of the simplified Polycirridae within Terebellinae differed from previous hypotheses, warranting the division of Terebellinae into Lanicini, Procleini, Terebellini and Polycirrini. Ampharetidae (excluding Melinnidae) were well-supported as the sister group to Alvinellidae and we recognize three clades: Ampharetinae, Amaginae and Amphicteinae. Our analysis found several paraphyletic genera and undescribed species. Morphological transformations on the phylogeny supported the hypothesis of an ancestor that possessed both branchiae and chaetae, which is at odds with proposals of a "naked" ancestor. Our study demonstrates how a robust backbone phylogeny can be combined with dense taxon coverage and morphological traits to give insights into the evolutionary history and transformation of traits.
Collapse
Affiliation(s)
- Josefin Stiller
- Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA; (E.T.)
- Centre for Biodiversity Genomics, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ekin Tilic
- Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA; (E.T.)
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, 53121 Bonn, Germany
| | - Vincent Rousset
- Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA; (E.T.)
| | - Fredrik Pleijel
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California, San Diego, CA 92037, USA; (E.T.)
| |
Collapse
|
6
|
Yen NK, Rouse GW. Phylogeny, biogeography and systematics of Pacific vent, methane seep, and whale-fall Parougia (Dorvilleidae : Annelida), with eight new species. INVERTEBR SYST 2020. [DOI: 10.1071/is19042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dorvilleidae is a diverse group of annelids found in many marine environments and also commonly associated with chemosynthetic habitats. One dorvilleid genus, Parougia, currently has 11 described species, of which two are found at vents or seeps: Parougia wolfi and Parougia oregonensis. Eight new Parougia species are recognised and described in this study from collections in the Pacific Ocean, all from whale-falls, hydrothermal vents, or methane seeps at ~600-m depth or greater. The specimens were studied using morphology and phylogenetic analyses of DNA sequences from mitochondrial (cytochrome c oxidase subunit I, 16S rRNA, and cytochrome b) and nuclear (18S rRNA and histone 3) genes. Six sympatric Parougia spp. were found at Hydrate Ridge, Oregon, while three of the Parougia species occurred at different types of chemosynthetic habitats. Two new species were found over wide geographical and bathymetric ranges. Another dorvilleid genus, Ophryotrocha, has previously been highlighted as diversifying in the deep-sea environment. Our results document the hitherto unknown diversity of another dorvilleid genus, Parougia, at various chemosynthetic environments. http://zoobank.org/urn:lsid:zoobank.org:pub:EC7EBBEA-2FB5-43D6-BE53-1A468B541A5C
Collapse
|
7
|
Phylogeny and Biogeography of Branchipolynoe (Polynoidae, Phyllodocida, Aciculata, Annelida), with Descriptions of Five New Species from Methane Seeps and Hydrothermal Vents. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The four named species of Branchipolynoe all live symbiotically in mytilid mussels (Bathymodiolus) that occur at hydrothermal vents or methane seeps. Analyses using mitochondrial (COI and 16S) and nuclear (ITS) genes, as well as morphology, were conducted on a collection of Branchipolynoe from Pacific Costa Rican methane seeps and West Pacific hydrothermal vents. This revealed five new species of Branchipolynoe, and these are formally described. The new species from Costa Rica live in three species of Bathymodiolus mussels (also new) at depths ranging from 1000 to 1800 m. Branchipolynoe kajsae n. sp. and Branchipolynoe halliseyae n. sp. were found in all three undescribed Bathymodiolus species, while Branchipolynoe eliseae n. sp. was found in Bathymodiolus spp. 1 and 2, and Branchipolynoe meridae n. sp. was found in Bathymodiolus spp. 1 and 3. Hence, Bathymodiolus sp. 1 hosted all four of the new species, while the other two Bathymodiolus hosted three each. Most mussels contained only one specimen of Branchipolynoe; where there was more than one, these were often a female and smaller male of the same species. The newly discovered species from the West Pacific, Branchipolynoe tjiasmantoi n. sp., lives in unidentified Bathymodiolus at depths ranging from 674 to 2657 m from hydrothermal vents in the North Fiji (Fiji) and Lau Basins (Tonga) and also from New Zealand, Vanuatu, and the Manus Basin (Papua New Guinea). The phylogenetic and biogeographical implications of this diversity of Branchipolynoe are discussed.
Collapse
|
8
|
Sen A, Duperron S, Hourdez S, Piquet B, Léger N, Gebruk A, Le Port AS, Svenning MM, Andersen AC. Cryptic frenulates are the dominant chemosymbiotrophic fauna at Arctic and high latitude Atlantic cold seeps. PLoS One 2018; 13:e0209273. [PMID: 30592732 PMCID: PMC6310283 DOI: 10.1371/journal.pone.0209273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/03/2018] [Indexed: 12/02/2022] Open
Abstract
We provide the first detailed identification of Barents Sea cold seep frenulate hosts and their symbionts. Mitochondrial COI sequence analysis, in combination with detailed morphological investigations through both light and electron microscopy was used for identifying frenulate hosts, and comparing them to Oligobrachia haakonmosbiensis and Oligobrachia webbi, two morphologically similar species known from the Norwegian Sea. Specimens from sites previously assumed to host O. haakonmosbiensis were included in our molecular analysis, which allowed us to provide new insight on the debate regarding species identity of these Oligobrachia worms. Our results indicate that high Arctic seeps are inhabited by a species that though closely related to Oligobrachia haakonmosbiensis, is nonetheless distinct. We refer to this group as the Oligobrachia sp. CPL-clade, based on the colloquial names of the sites they are currently known to inhabit. Since members of the Oligobrachia sp. CPL-clade cannot be distinguished from O. haakonmosbiensis or O. webbi based on morphology, we suggest that a complex of cryptic Oligobrachia species inhabit seeps in the Norwegian Sea and the Arctic. The symbionts of the Oligobrachia sp. CPL-clade were also found to be closely related to O. haakonmosbiensis symbionts, but genetically distinct. Fluorescent in situ hybridization and transmission electron micrographs revealed extremely dense populations of bacteria within the trophosome of members of the Oligobrachia sp. CPL-clade, which is unusual for frenulates. Bacterial genes for sulfur oxidation were detected and small rod shaped bacteria (round in cross section), typical of siboglinid-associated sulfur-oxidizing bacteria, were seen on electron micrographs of trophosome bacteriocytes, suggesting that sulfide constitutes the main energy source. We hypothesize that specific, local geochemical conditions, in particular, high sulfide fluxes and concentrations could account for the unusually high symbiont densities in members of the Oligrobrachia sp. CPL-clade.
Collapse
Affiliation(s)
- Arunima Sen
- Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), UiT The Arctic University of Norway, Tromsø, Norway
| | - Sébastien Duperron
- Sorbonne Université, UMR7208 (MNHN, CNRS, IRD, UCN, UA) Biologie des organismes et écosystèmes aquatiques (BOREA), Paris, France.,Muséum National d'Histoire Naturelle-UMR7245 (MNHN CNRS) Mécanismes de Communication et Adaptation des Micro-organismes (MCAM), Paris, France
| | - Stéphane Hourdez
- UMR7144 Sorbonne Université, CNRS-Equipe Adaptation et Biologie des Invertébrés Marins en Conditions Extrêmes (ABICE)-Station Biologique de Roscoff, Roscoff, France
| | - Bérénice Piquet
- Sorbonne Université, UMR7208 (MNHN, CNRS, IRD, UCN, UA) Biologie des organismes et écosystèmes aquatiques (BOREA), Paris, France.,UMR7144 Sorbonne Université, CNRS-Equipe Adaptation et Biologie des Invertébrés Marins en Conditions Extrêmes (ABICE)-Station Biologique de Roscoff, Roscoff, France
| | - Nelly Léger
- Sorbonne Université, UMR7208 (MNHN, CNRS, IRD, UCN, UA) Biologie des organismes et écosystèmes aquatiques (BOREA), Paris, France
| | | | - Anne-Sophie Le Port
- UMR7144 Sorbonne Université, CNRS-Equipe Adaptation et Biologie des Invertébrés Marins en Conditions Extrêmes (ABICE)-Station Biologique de Roscoff, Roscoff, France
| | - Mette Marianne Svenning
- Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), UiT The Arctic University of Norway, Tromsø, Norway.,Department of Arctic Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ann C Andersen
- UMR7144 Sorbonne Université, CNRS-Equipe Adaptation et Biologie des Invertébrés Marins en Conditions Extrêmes (ABICE)-Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
9
|
Eilertsen MH, Georgieva MN, Kongsrud JA, Linse K, Wiklund H, Glover AG, Rapp HT. Genetic connectivity from the Arctic to the Antarctic: Sclerolinum contortum and Nicomache lokii (Annelida) are both widespread in reducing environments. Sci Rep 2018; 8:4810. [PMID: 29556042 PMCID: PMC5859262 DOI: 10.1038/s41598-018-23076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
The paradigm of large geographic ranges in the deep sea has been challenged by genetic studies, which often reveal putatively widespread species to be several taxa with more restricted ranges. Recently, a phylogeographic study revealed that the tubeworm Sclerolinum contortum (Siboglinidae) inhabits vents and seeps from the Arctic to the Antarctic. Here, we further test the conspecificity of the same populations of S. contortum with additional mitochondrial and nuclear markers. We also investigate the genetic connectivity of another species with putatively the same wide geographic range - Nicomache lokii (Maldanidae). Our results support the present range of S. contortum, and the range of N. lokii is extended from vents and seeps in the Nordic Seas to mud volcanoes in the Barbados Trench and Antarctic vents. Sclerolinum contortum shows more pronounced geographic structure than N. lokii, but whether this is due to different dispersal capacities or reflects the geographic isolation of the sampled localities is unclear. Two distinct mitochondrial lineages of N. lokii are present in the Antarctic, which may result from two independent colonization events. The environmental conditions inhabited by the two species and implications for their distinct habitat preference is discussed.
Collapse
Affiliation(s)
- Mari H Eilertsen
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway. .,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.
| | - Magdalena N Georgieva
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, PO Box 7800, N-5020, Bergen, Norway
| | - Katrin Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Adrian G Glover
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Hans T Rapp
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway.,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.,Uni Research, Uni Environment, PO Box 7810, N-5020, Bergen, Norway
| |
Collapse
|
10
|
Rouse GW, Carvajal JI, Pleijel F. Phylogeny of Hesionidae (Aciculata, Annelida), with four new species from deep-sea eastern Pacific methane seeps, and resolution of the affinity of Hesiolyra. INVERTEBR SYST 2018. [DOI: 10.1071/is17092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hesionidae Grube, 1850 currently comprises over 175 species in 28 genera, placed in several subfamilies. Discoveries in recent years have largely been of deep-sea taxa. Here we describe a further four new hesionid species, mainly from methane ‘cold’ seeps at around 1000–1800 m depths off the Pacific coast of Costa Rica and new record of another species. Several of these taxa also occur at methane seeps in the Guaymas Basis (Mexico) and off the USA west coast (California and Oregon). The phylogenetic relationships within Hesionidae are reassessed via maximum parsimony and maximum likelihood analyses of DNA sequences from nuclear (18S rRNA and 28SrRNA) and mitochondrial (16SrRNA and Cytochrome c oxidase I) loci for the new samples. On the basis of these results, we refer one of the new species to Gyptis Marion & Bobretzky in Marion, 1874, one to Neogyptis Pleijel, Rouse, Sundkvist & Nygren, 2012, and two to Sirsoe Pleijel, 1998. The new species Gyptis robertscrippsi n. sp., Neogyptis jeffruoccoi n. sp., Sirsoe dalailamai n. sp. and Sirsoe munki n. sp. We refer to a collection of individuals from seeps ranging from Oregon to Costa Rica as Amphiduropsis cf. axialensis (Blake & Hilbig, 1990), even though this species was described from hydrothermal vents off Oregon. Neogyptis jeffruoccoi n. sp. was generally found living inside the solemyid clam Acharax johnsoni (Dall, 1891). The position of Hesiolyra bergi Blake, 1985 is resolved on the basis of newly-collected specimens from near the type locality and, as a result, Hesiolyrinae Pleijel, 1998 is synonymized with Gyptini Pleijel, 1998 (and Gyptinae Pleijel, 1998). http://zoobank.org/urn:lsid:zoobank.org:pub:9C0E88EE-34F8-4F25-9EC8-91797618AC86
Collapse
|
11
|
Parapar J, Kongsrud JA, Kongshavn K, Alvestad T, Aneiros F, Moreira J. A new species of Ampharete (Annelida: Ampharetidae) from the NW Iberian Peninsula, with a synoptic table comparing NE Atlantic species of the genus. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Julio Parapar
- Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, A Coruña, Spain
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Katrine Kongshavn
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Tom Alvestad
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Fernando Aneiros
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, Spain
| | - Juan Moreira
- Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
12
|
Eilertsen MH, Kongsrud JA, Alvestad T, Stiller J, Rouse GW, Rapp HT. Do ampharetids take sedimented steps between vents and seeps? Phylogeny and habitat-use of Ampharetidae (Annelida, Terebelliformia) in chemosynthesis-based ecosystems. BMC Evol Biol 2017; 17:222. [PMID: 29089027 PMCID: PMC5664827 DOI: 10.1186/s12862-017-1065-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A range of higher animal taxa are shared across various chemosynthesis-based ecosystems (CBEs), which demonstrates the evolutionary link between these habitats, but on a global scale the number of species inhabiting multiple CBEs is low. The factors shaping the distributions and habitat specificity of animals within CBEs are poorly understood, but geographic proximity of habitats, depth and substratum have been suggested as important. Biogeographic studies have indicated that intermediate habitats such as sedimented vents play an important part in the diversification of taxa within CBEs, but this has not been assessed in a phylogenetic framework. Ampharetid annelids are one of the most commonly encountered animal groups in CBEs, making them a good model taxon to study the evolution of habitat use in heterotrophic animals. Here we present a review of the habitat use of ampharetid species in CBEs, and a multi-gene phylogeny of Ampharetidae, with increased taxon sampling compared to previous studies. RESULTS The review of microhabitats showed that many ampharetid species have a wide niche in terms of temperature and substratum. Depth may be limiting some species to a certain habitat, and trophic ecology and/or competition are identified as other potentially relevant factors. The phylogeny revealed that ampharetids have adapted into CBEs at least four times independently, with subsequent diversification, and shifts between ecosystems have happened in each of these clades. Evolutionary transitions are found to occur both from seep to vent and vent to seep, and the results indicate a role of sedimented vents in the transition between bare-rock vents and seeps. CONCLUSION The high number of ampharetid species recently described from CBEs, and the putative new species included in the present phylogeny, indicates that there is considerable diversity still to be discovered. This study provides a molecular framework for future studies to build upon and identifies some ecological and evolutionary hypotheses to be tested as new data is produced.
Collapse
Affiliation(s)
- Mari H Eilertsen
- Department of Biology, University of Bergen, Bergen, Norway.
- K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, Bergen, Norway.
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Tom Alvestad
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Josefin Stiller
- Scripps Institution of Oceanography, University of California San Diego, California, USA
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, California, USA
| | - Hans T Rapp
- Department of Biology, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, Bergen, Norway
- Uni Research, Uni Environment, Bergen, Norway
| |
Collapse
|
13
|
Goffredi SK, Johnson S, Tunnicliffe V, Caress D, Clague D, Escobar E, Lundsten L, Paduan JB, Rouse G, Salcedo DL, Soto LA, Spelz-Madero R, Zierenberg R, Vrijenhoek R. Hydrothermal vent fields discovered in the southern Gulf of California clarify role of habitat in augmenting regional diversity. Proc Biol Sci 2017; 284:20170817. [PMID: 28724734 PMCID: PMC5543219 DOI: 10.1098/rspb.2017.0817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/16/2017] [Indexed: 11/12/2022] Open
Abstract
Hydrothermal vent communities are distributed along mid-ocean spreading ridges as isolated patches. While distance is a key factor influencing connectivity among sites, habitat characteristics are also critical. The Pescadero Basin (PB) and Alarcón Rise (AR) vent fields, recently discovered in the southern Gulf of California, are bounded by previously known vent localities (e.g. Guaymas Basin and 21° N East Pacific Rise); yet, the newly discovered vents differ markedly in substrata and vent fluid attributes. Out of 116 macrofaunal species observed or collected, only three species are shared among all four vent fields, while 73 occur at only one locality. Foundation species at basalt-hosted sulfide chimneys on the AR differ from the functional equivalents inhabiting sediment-hosted carbonate chimneys in the PB, only 75 km away. The dominant species of symbiont-hosting tubeworms and clams, and peripheral suspension-feeding taxa, differ between the sites. Notably, the PB vents host a limited and specialized fauna in which 17 of 26 species are unknown at other regional vents and many are new species. Rare sightings and captured larvae of the 'missing' species revealed that dispersal limitation is not responsible for differences in community composition at the neighbouring vent localities. Instead, larval recruitment-limiting habitat suitability probably favours species differentially. As scenarios develop to design conservation strategies around mining of seafloor sulfide deposits, these results illustrate that models encompassing habitat characteristics are needed to predict metacommunity structure.
Collapse
Affiliation(s)
- Shana K Goffredi
- Department of Biology, Occidental College, Los Angeles, CA, USA
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Shannon Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Verena Tunnicliffe
- School of Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - David Caress
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - David Clague
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Elva Escobar
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lonny Lundsten
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Greg Rouse
- Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Diana L Salcedo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis A Soto
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ronald Spelz-Madero
- Department of Geology, Universidad Autónoma de Baja California, Mexico City, Mexico
| | - Robert Zierenberg
- Earth and Planetary Sciences, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
14
|
Bernardino AF, Li Y, Smith CR, Halanych KM. Multiple introns in a deep-sea Annelid (Decemunciger: Ampharetidae) mitochondrial genome. Sci Rep 2017; 7:4295. [PMID: 28655915 PMCID: PMC5487361 DOI: 10.1038/s41598-017-04094-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/09/2017] [Indexed: 01/18/2023] Open
Abstract
Wood falls provide episodic fluxes of energy to the sea floor that are degraded by a species-rich benthic fauna. Part of this rich diversity includes annelid polychaetes but unfortunately, our understanding of such fauna is limited and their genetic variability and evolutionary origins remain poorly known. In this study, we sequenced complete mitochondrial genomes from three congeneric Decemunciger (Ampharetidae) individuals that had colonized multiple wood falls in the deep (~1600 m) NE Pacific Ocean. Mitochondrial gene order within Decemunciger was similar to the three other available Terebellomorpha genomes, consistent with the relatively conserved nature of mitochondrial genomes within annelids. Unexpectedly, we found introns within the cox1, nad1 and nad4 genes of all three genomes assembled. This is the greatest number of introns observed in annelid mtDNA genomes, and possibly in bilaterians. Interestingly, the introns were of variable sizes suggesting possible evolutionary differences in the age and origins of introns. The sequence of the introns within cox1 is similar to Group II introns previously identified, suggesting that introns in the mitochondrial genome of annelids may be more widespread then realized. Phylogenetically, Decemunciger appears to be a sister clade among current vent and seep deep-sea Ampharetinae.
Collapse
Affiliation(s)
- Angelo F Bernardino
- Universidade Federal do Espírito Santo, Grupo de Ecologia Bêntica, Departamento de Oceanografia, Av. Fernando Ferrari, 514, Vitória, ES, 29075-910, Brazil.
| | - Yuanning Li
- Auburn University, Department of Biological Sciences, 101 Life Sciences Building, Auburn, AL, 36849, USA
| | - Craig R Smith
- Department of Oceanography, SOEST, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Kenneth M Halanych
- Auburn University, Department of Biological Sciences, 101 Life Sciences Building, Auburn, AL, 36849, USA.
| |
Collapse
|
15
|
Álvarez-Campos P, Giribet G, Riesgo A. The Syllis gracilis species complex: A molecular approach to a difficult taxonomic problem (Annelida, Syllidae). Mol Phylogenet Evol 2017; 109:138-150. [DOI: 10.1016/j.ympev.2016.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 11/26/2022]
|
16
|
Álvarez-Campos P, Giribet G, San Martín G, Rouse GW, Riesgo A. Straightening the striped chaos: systematics and evolution of Trypanosyllis and the case of its pseudocryptic type species Trypanosyllis krohnii (Annelida, Syllidae). Zool J Linn Soc 2017. [DOI: 10.1111/zoj.12443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Kiel S. A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas. Proc Biol Sci 2016; 283:20162337. [PMID: 27974524 PMCID: PMC5204157 DOI: 10.1098/rspb.2016.2337] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 11/12/2022] Open
Abstract
Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported.
Collapse
Affiliation(s)
- Steffen Kiel
- Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden
| |
Collapse
|
18
|
Watson C, Ignacio Carvajal J, Sergeeva NG, Pleijel F, Rouse GW. Free-living calamyzin chrysopetalids (Annelida) from methane seeps, anoxic basins, and whale falls. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlotte Watson
- Museum & Art Gallery of the Northern Territory; PO Box 4646 Darwin NT 0820 Australia
| | | | - Nelly G. Sergeeva
- Institute of Marine Biological Research; Russian Academy of Science; Sevastopol Russian Federation
| | - Fredrik Pleijel
- Department of Biological and Environmental Sciences; University of Gothenburg; Tjärnö SE-452 96 Strömstad Sweden
| | - Greg W. Rouse
- Scripps Institution of Oceanography; USCD La Jolla; CA 92093-0202 USA
| |
Collapse
|
19
|
Summers M, Pleijel F, Rouse GW. Whale falls, multiple colonisations of the deep, and the phylogeny of Hesionidae (Annelida). INVERTEBR SYST 2015. [DOI: 10.1071/is14055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phylogenetic relationships within Hesionidae Grube, 1850 are assessed via maximum parsimony and maximum likelihood analyses of mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and nuclear (18S rRNA, and 28S rRNA) data. The analyses are based on 42 hesionid species; six of these being new species that are described here. The new species, all from deep (>200 m depth) benthic environments (including whale falls) in the eastern Pacific, are Gyptis shannonae, sp. nov., Neogyptis julii, sp. nov., Sirsoe sirikos, sp. nov., Vrijenhoekia ketea, sp. nov., Vrijenhoekia falenothiras, sp. nov., and Vrijenhoekia ahabi, sp. nov. The molecular divergence among the new members of Vrijenhoekia is pronounced enough to consider them cryptic species, even though we cannot distinguish among them morphologically. Our results also showed that the subfamily Hesioninae Grube, 1850, as traditionally delineated, was paraphyletic. We thus restrict Hesioninae to include only Hesionini Grube, 1850 and refer the remaining members to Psamathinae Pleijel, 1998. The present study increases the number of hesionid species associated with whale falls from one to six and markedly increases the number of described deep-sea hesionid taxa. There appear to have been multiple colonisations of the deep sea from shallow waters by hesionids, though further sampling is warranted.
Collapse
|
20
|
Plouviez S, Faure B, Le Guen D, Lallier FH, Bierne N, Jollivet D. A new barrier to dispersal trapped old genetic clines that escaped the Easter Microplate tension zone of the Pacific vent mussels. PLoS One 2013; 8:e81555. [PMID: 24312557 PMCID: PMC3846894 DOI: 10.1371/journal.pone.0081555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 10/21/2013] [Indexed: 11/23/2022] Open
Abstract
Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S.
Collapse
Affiliation(s)
- Sophie Plouviez
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
- * E-mail:
| | - Baptiste Faure
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
- Université Montpellier 2, Montpellier, France
- CNRS UMR 5554, Institut des Sciences de l’Evolution, Station Méditerranéenne de l’Environnement Littoral, Sète, France
| | - Dominique Le Guen
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - François H. Lallier
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Bierne
- Université Montpellier 2, Montpellier, France
- CNRS UMR 5554, Institut des Sciences de l’Evolution, Station Méditerranéenne de l’Environnement Littoral, Sète, France
| | - Didier Jollivet
- Université Pierre et Marie Curie-Paris 6, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- CNRS UMR 7144, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
21
|
Borda E, Kudenov JD, Chevaldonné P, Blake JA, Desbruyères D, Fabri MC, Hourdez S, Pleijel F, Shank TM, Wilson NG, Schulze A, Rouse GW. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps. Proc Biol Sci 2013; 280:20131876. [PMID: 24026823 DOI: 10.1098/rspb.2013.1876] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time.
Collapse
Affiliation(s)
- Elizabeth Borda
- Scripps Institution of Oceanography, , UC San Diego, La Jolla, CA 93093, USA, Department of Biological Sciences, University of Alaska Anchorage, , Anchorage, AK 99508, USA, CNRS, UMR 7263 IMBE, Institut Méditerranéen de la Biodiversité et d'Ecologie Marine et Continentale, Aix-Marseille Université, , Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France, AECOM Marine and Coastal Center, , Woods Hole, MA 02543, USA, Woods Hole Oceanographic Institution, , Woods Hole, MA 02543, USA, Département Etude des Ecosystèmes Profonds, Centre de Brest de l'IFREMER, , 29280 Plouzané Cedex, France, CNRS, UPMC UMR 7127, , Station Biologique de Roscoff, 29682 Roscoff, France, Department of Marine Ecology, University of Gothenburg, , Tjärnö, Strömstad, Sweden, Marine Biology Department, Texas A&M University at Galveston, , Galveston, TX 77553, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|