1
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. Proc Natl Acad Sci U S A 2025; 122:e2500553122. [PMID: 40314967 PMCID: PMC12088440 DOI: 10.1073/pnas.2500553122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Current genome sequencing initiatives across a wide range of life forms offer significant potential to enhance our understanding of evolutionary relationships and support transformative biological and medical applications. Species trees play a central role in many of these applications; however, despite the widespread availability of genome assemblies, accurate inference of species trees remains challenging due to the limited automation, substantial domain expertise, and computational resources required by conventional methods. To address this limitation, we present ROADIES, a fully automated pipeline to infer species trees starting from raw genome assemblies. In contrast to the prominent approach, ROADIES incorporates a unique strategy of randomly sampling segments of the input genomes to generate gene trees. This eliminates the need for predefining a set of loci, limiting the analyses to a fixed number of genes, and performing the cumbersome gene annotation and/or whole genome alignment steps. ROADIES also eliminates the need to infer orthology by leveraging existing discordance-aware methods that allow multicopy genes. Using the genomic datasets from large-scale sequencing efforts across four diverse life forms (placental mammals, pomace flies, birds, and budding yeasts), we show that ROADIES infers species trees that are comparable in quality to the state-of-the-art studies but in a fraction of the time and effort, including on challenging datasets with rampant gene tree discordance and complex polyploidy. With its speed, accuracy, and automation, ROADIES has the potential to vastly simplify species tree inference, making it accessible to a broader range of scientists and applications.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego, CA92093
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| |
Collapse
|
2
|
Springer MS, Gatesy J. A new phylogeny for Aves is compromised by pervasive misalignment and homology problems. Proc Natl Acad Sci U S A 2024; 121:e2406494121. [PMID: 38976728 PMCID: PMC11260159 DOI: 10.1073/pnas.2406494121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA92521
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY10024
| |
Collapse
|
3
|
Simmons MP, Goloboff PA, Stöver BC, Springer MS, Gatesy J. Quantification of congruence among gene trees with polytomies using overall success of resolution for phylogenomic coalescent analyses. Cladistics 2023; 39:418-436. [PMID: 37096985 DOI: 10.1111/cla.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
Gene-tree-inference error can cause species-tree-inference artefacts in summary phylogenomic coalescent analyses. Here we integrate two ways of accommodating these inference errors: collapsing arbitrarily or dubiously resolved gene-tree branches, and subsampling gene trees based on their pairwise congruence. We tested the effect of collapsing gene-tree branches with 0% approximate-likelihood-ratio-test (SH-like aLRT) support in likelihood analyses and strict consensus trees for parsimony, and then subsampled those partially resolved trees based on congruence measures that do not penalize polytomies. For this purpose we developed a new TNT script for congruence sorting (congsort), and used it to calculate topological incongruence for eight phylogenomic datasets using three distance measures: standard Robinson-Foulds (RF) distances; overall success of resolution (OSR), which is based on counting both matching and contradicting clades; and RF contradictions, which only counts contradictory clades. As expected, we found that gene-tree incongruence was often concentrated in clades that are arbitrarily or dubiously resolved and that there was greater congruence between the partially collapsed gene trees and the coalescent and concatenation topologies inferred from those genes. Coalescent branch lengths typically increased as the most incongruent gene trees were excluded, although branch supports typically did not. We investigated two successful and complementary approaches to prioritizing genes for investigation of alignment or homology errors. Coalescent-tree clades that contradicted concatenation-tree clades were generally less robust to gene-tree subsampling than congruent clades. Our preferred approach to collapsing likelihood gene-tree clades (0% SH-like aLRT support) and subsampling those trees (OSR) generally outperformed competing approaches for a large fungal dataset with respect to branch lengths, support and congruence. We recommend widespread application of this approach (and strict consensus trees for parsimony-based analyses) for improving quantification of gene-tree congruence/conflict, estimating coalescent branch lengths, testing robustness of coalescent analyses to gene-tree-estimation error, and improving topological robustness of summary coalescent analyses. This approach is quick and easy to implement, even for huge datasets.
Collapse
Affiliation(s)
- Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pablo A Goloboff
- CONICET, INSUE, Fundación Miguel Lillo, Miguel Lillo 251, 4000, S.M. de Tucumán, Argentina
| | - Ben C Stöver
- Institute for Evolution and Biodiversity, WMU Münster, 48149, Münster, Germany
| | - Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
| |
Collapse
|
4
|
Zhang C, Mirarab S. Weighting by Gene Tree Uncertainty Improves Accuracy of Quartet-based Species Trees. Mol Biol Evol 2022; 39:6750035. [PMID: 36201617 PMCID: PMC9750496 DOI: 10.1093/molbev/msac215] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023] Open
Abstract
Phylogenomic analyses routinely estimate species trees using methods that account for gene tree discordance. However, the most scalable species tree inference methods, which summarize independently inferred gene trees to obtain a species tree, are sensitive to hard-to-avoid errors introduced in the gene tree estimation step. This dilemma has created much debate on the merits of concatenation versus summary methods and practical obstacles to using summary methods more widely and to the exclusion of concatenation. The most successful attempt at making summary methods resilient to noisy gene trees has been contracting low support branches from the gene trees. Unfortunately, this approach requires arbitrary thresholds and poses new challenges. Here, we introduce threshold-free weighting schemes for the quartet-based species tree inference, the metric used in the popular method ASTRAL. By reducing the impact of quartets with low support or long terminal branches (or both), weighting provides stronger theoretical guarantees and better empirical performance than the unweighted ASTRAL. Our simulations show that weighting improves accuracy across many conditions and reduces the gap with concatenation in conditions with low gene tree discordance and high noise. On empirical data, weighting improves congruence with concatenation and increases support. Together, our results show that weighting, enabled by a new optimization algorithm we introduce, improves the utility of summary methods and can reduce the incongruence often observed across analytical pipelines.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, UC San Diego, La Jolla, CA, USA
| | | |
Collapse
|
5
|
Simmons MP, Maurin O, Bailey P, Brewer GE, Roy S, Lombardi JA, Forest F, Baker WJ. Benefits of alignment quality-control processing steps and an Angiosperms353 phylogenomics pipeline applied to the Celastrales. Cladistics 2022; 38:595-611. [PMID: 35569142 DOI: 10.1111/cla.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2022] [Indexed: 01/31/2023] Open
Abstract
We examined the impact of successive alignment quality-control steps on downstream phylogenomic analyses. We applied a recently published phylogenomics pipeline that was developed for the Angiosperms353 target-sequence-capture probe set to the flowering plant order Celastrales. Our final dataset consists of 158 species, including at least one exemplar from all 109 currently recognized Celastrales genera. We performed nine quality-control steps and compared the inferred resolution, branch support, and topological congruence of the inferred gene and species trees with those generated after each of the first six steps. We describe and justify each of our quality-control steps, including manual masking, in detail so that they may be readily applied to other lineages. We found that highly supported clades could generally be relied upon even if stringent orthology and alignment quality-control measures had not been applied. But separate instances were identified, for both concatenation and coalescence, wherein a clade was highly supported before manual masking but then subsequently contradicted. These results are generally reassuring for broad-scale analyses that use phylogenomics pipelines, but also indicate that we cannot rely exclusively on these analyses to conclude how challenging phylogenetic problems are best resolved.
Collapse
Affiliation(s)
- Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523-1878, USA
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Paul Bailey
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Grace E Brewer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Shyamali Roy
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Julio A Lombardi
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista - UNESP, Av. 24-A 1515 - Bela Vista, Caixa Postal 199, São Paulo, Brazil
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | |
Collapse
|
6
|
Balaban M, Bristy NA, Faisal A, Bayzid MS, Mirarab S. Genome-wide alignment-free phylogenetic distance estimation under a no strand-bias model. BIOINFORMATICS ADVANCES 2022; 2:vbac055. [PMID: 35992043 PMCID: PMC9383262 DOI: 10.1093/bioadv/vbac055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
While alignment has been the dominant approach for determining homology prior to phylogenetic inference, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore, alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of sequence evolution such as Jukes-Cantor. If we can estimate frequencies of base substitutions in an alignment-free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA sequences is unknown for many forms of genome-wide data, which arguably present the best use case for alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer mismatches after replacement due to random chance as opposed to homology. We show in simulation that alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the accuracy on assembled and unassembled biological data. Availability and implementation Our software is available open source at https://github.com/nishatbristy007/NSB. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Ahnaf Faisal
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | | |
Collapse
|
7
|
Gatesy J, Springer MS. Phylogenomic Coalescent Analyses of Avian Retroelements Infer Zero-Length Branches at the Base of Neoaves, Emergent Support for Controversial Clades, and Ancient Introgressive Hybridization in Afroaves. Genes (Basel) 2022; 13:1167. [PMID: 35885951 PMCID: PMC9324441 DOI: 10.3390/genes13071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
Retroelement insertions (RIs) are low-homoplasy characters that are ideal data for addressing deep evolutionary radiations, where gene tree reconstruction errors can severely hinder phylogenetic inference with DNA and protein sequence data. Phylogenomic studies of Neoaves, a large clade of birds (>9000 species) that first diversified near the Cretaceous−Paleogene boundary, have yielded an array of robustly supported, contradictory relationships among deep lineages. Here, we reanalyzed a large RI matrix for birds using recently proposed quartet-based coalescent methods that enable inference of large species trees including branch lengths in coalescent units, clade-support, statistical tests for gene flow, and combined analysis with DNA-sequence-based gene trees. Genome-scale coalescent analyses revealed extremely short branches at the base of Neoaves, meager branch support, and limited congruence with previous work at the most challenging nodes. Despite widespread topological conflicts with DNA-sequence-based trees, combined analyses of RIs with thousands of gene trees show emergent support for multiple higher-level clades (Columbea, Passerea, Columbimorphae, Otidimorphae, Phaethoquornithes). RIs express asymmetrical support for deep relationships within the subclade Afroaves that hints at ancient gene flow involving the owl lineage (Strigiformes). Because DNA-sequence data are challenged by gene tree-reconstruction error, analysis of RIs represents one approach for improving gene tree-based methods when divergences are deep, internodes are short, terminal branches are long, and introgressive hybridization further confounds species−tree inference.
Collapse
Affiliation(s)
- John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
8
|
Wang N, Braun EL, Liang B, Cracraft J, Smith SA. Categorical edge-based analyses of phylogenomic data reveal conflicting signals for difficult relationships in the avian tree. Mol Phylogenet Evol 2022; 174:107550. [PMID: 35691570 DOI: 10.1016/j.ympev.2022.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Phylogenetic analyses fail to yield a satisfactory resolution of some relationships in the tree of life even with genome-scale datasets, so the failure is unlikely to reflect limitations in the amount of data. Gene tree conflicts are particularly notable in studies focused on these contentious nodes, and taxon sampling, different analytical methods, and/or data type effects can further confound analyses. Although many efforts have been made to incorporate biological conflicts, few studies have curated individual genes for their efficiency in phylogenomic studies. Here, we conduct an edge-based analysis of Neoavian evolution, examining the phylogenetic efficacy of two recent phylogenomic bird datasets and three datatypes (ultraconserved elements [UCEs], introns, and coding regions). We assess the potential causes for biases in signal-resolution for three difficult nodes: the earliest divergence of Neoaves, the position of the enigmatic Hoatzin (Opisthocomus hoazin), and the position of owls (Strigiformes). We observed extensive conflict among genes for all data types and datasets even after meticulous curation. Edge-based analyses (EBA) increased congruence and provided information about the impact of data type, GC content variation (GCCV), and outlier genes on each of nodes we examined. First, outlier gene signals appeared to drive different patterns of support for the relationships among the earliest diverging Neoaves. Second, the placement of Hoatzin was highly variable, although our EBA did reveal a previously unappreciated data type effect with an impact on its position. It also revealed that the resolution with the most support here was Hoatzin + shorebirds. Finally, GCCV, rather than data type (i.e., coding vs non-coding) per se, was correlated with a signal that supports monophyly of owls + Accipitriformes (hawks, eagles, and vultures). Eliminating high GCCV loci increased the signal for owls + mousebirds. Categorical EBA was able to reveal the nature of each edge and provide a way to highlight especially problematic branches that warrant a further examination. The current study increases our understanding about the contentious parts of the avian tree, which show even greater conflicts than appreciated previously.
Collapse
Affiliation(s)
- Ning Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA.
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32607, USA
| | - Bin Liang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
9
|
Aledo JC. Phylogenies from unaligned proteomes using sequence environments of amino acid residues. Sci Rep 2022; 12:7497. [PMID: 35523825 PMCID: PMC9076898 DOI: 10.1038/s41598-022-11370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Alignment-free methods for sequence comparison and phylogeny inference have attracted a great deal of attention in recent years. Several algorithms have been implemented in diverse software packages. Despite the great number of existing methods, most of them are based on word statistics. Although they propose different filtering and weighting strategies and explore different metrics, their performance may be limited by the phylogenetic signal preserved in these words. Herein, we present a different approach based on the species-specific amino acid neighborhood preferences. These differential preferences can be assessed in the context of vector spaces. In this way, a distance-based method to build phylogenies has been developed and implemented into an easy-to-use R package. Tests run on real-world datasets show that this method can reconstruct phylogenetic relationships with high accuracy, and often outperforms other alignment-free approaches. Furthermore, we present evidence that the new method can perform reliably on datasets formed by non-orthologous protein sequences, that is, the method not only does not require the identification of orthologous proteins, but also does not require their presence in the analyzed dataset. These results suggest that the neighborhood preference of amino acids conveys a phylogenetic signal that may be of great utility in phylogenomics.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071, Málaga, Spain.
| |
Collapse
|
10
|
Mai U, Mirarab S. Completing gene trees without species trees in sub-quadratic time. Bioinformatics 2022; 38:1532-1541. [PMID: 34978565 DOI: 10.1093/bioinformatics/btab875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION As genome-wide reconstruction of phylogenetic trees becomes more widespread, limitations of available data are being appreciated more than ever before. One issue is that phylogenomic datasets are riddled with missing data, and gene trees, in particular, almost always lack representatives from some species otherwise available in the dataset. Since many downstream applications of gene trees require or can benefit from access to complete gene trees, it will be beneficial to algorithmically complete gene trees. Also, gene trees are often unrooted, and rooting them is useful for downstream applications. While completing and rooting a gene tree with respect to a given species tree has been studied, those problems are not studied in depth when we lack such a reference species tree. RESULTS We study completion of gene trees without a need for a reference species tree. We formulate an optimization problem to complete the gene trees while minimizing their quartet distance to the given set of gene trees. We extend a seminal algorithm by Brodal et al. to solve this problem in quasi-linear time. In simulated studies and on a large empirical data, we show that completion of gene trees using other gene trees is relatively accurate and, unlike the case where a species tree is available, is unbiased. AVAILABILITY AND IMPLEMENTATION Our method, tripVote, is available at https://github.com/uym2/tripVote. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Uyen Mai
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
11
|
Álvarez-Carretero S, Tamuri AU, Battini M, Nascimento FF, Carlisle E, Asher RJ, Yang Z, Donoghue PCJ, Dos Reis M. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 2022; 602:263-267. [PMID: 34937052 DOI: 10.1038/s41586-021-04341-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
High-throughput sequencing projects generate genome-scale sequence data for species-level phylogenies1-3. However, state-of-the-art Bayesian methods for inferring timetrees are computationally limited to small datasets and cannot exploit the growing number of available genomes4. In the case of mammals, molecular-clock analyses of limited datasets have produced conflicting estimates of clade ages with large uncertainties5,6, and thus the timescale of placental mammal evolution remains contentious7-10. Here we develop a Bayesian molecular-clock dating approach to estimate a timetree of 4,705 mammal species integrating information from 72 mammal genomes. We show that increasingly larger phylogenomic datasets produce diversification time estimates with progressively smaller uncertainties, facilitating precise tests of macroevolutionary hypotheses. For example, we confidently reject an explosive model of placental mammal origination in the Palaeogene8 and show that crown Placentalia originated in the Late Cretaceous with unambiguous ordinal diversification in the Palaeocene/Eocene. Our Bayesian methodology facilitates analysis of complete genomes and thousands of species within an integrated framework, making it possible to address hitherto intractable research questions on species diversifications. This approach can be used to address other contentious cases of animal and plant diversifications that require analysis of species-level phylogenomic datasets.
Collapse
Affiliation(s)
- Sandra Álvarez-Carretero
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Asif U Tamuri
- Centre for Advanced Research Computing, University College London, London, UK
- EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Matteo Battini
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Fabrícia F Nascimento
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Emily Carlisle
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Robert J Asher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - Mario Dos Reis
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
12
|
How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassulaceae). Mol Phylogenet Evol 2021; 167:107342. [PMID: 34785384 DOI: 10.1016/j.ympev.2021.107342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Analysing multiple genomic regions while incorporating detection and qualification of discordance among regions has become standard for understanding phylogenetic relationships. In plants, which usually have comparatively large genomes, this is feasible by the combination of reduced-representation library (RRL) methods and high-throughput sequencing enabling the cost effective acquisition of genomic data for thousands of loci from hundreds of samples. One popular RRL method is RADseq. A major disadvantage of established RADseq approaches is the rather short fragment and sequencing range, leading to loci of little individual phylogenetic information. This issue hampers the application of coalescent-based species tree inference. The modified RADseq protocol presented here targets ca. 5,000 loci of 300-600nt length, sequenced with the latest short-read-sequencing (SRS) technology, has the potential to overcome this drawback. To illustrate the advantages of this approach we use the study group Aichryson Webb & Berthelott (Crassulaceae), a plant genus that diversified on the Canary Islands. The data analysis approach used here aims at a careful quality control of the long loci dataset. It involves an informed selection of thresholds for accurate clustering, a thorough exploration of locus properties, such as locus length, coverage and variability, to identify potential biased data and a comparative phylogenetic inference of filtered datasets, accompanied by an evaluation of resulting BS support, gene and site concordance factor values, to improve overall resolution of the resulting phylogenetic trees. The final dataset contains variable loci with an average length of 373nt and facilitates species tree estimation using a coalescent-based summary approach. Additional improvements brought by the approach are critically discussed.
Collapse
|
13
|
Simmons MP, Springer MS, Gatesy J. Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of palaeognath birds. Mol Phylogenet Evol 2021; 167:107344. [PMID: 34748873 DOI: 10.1016/j.ympev.2021.107344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Phylogenomic analyses of ancient rapid radiations can produce conflicting results that are driven by differential sampling of taxa and characters as well as the limitations of alternative analytical methods. We re-examine basal relationships of palaeognath birds (ratites and tinamous) using recently published datasets of nucleotide characters from 20,850 loci as well as 4301 retroelement insertions. The original studies attributed conflicting resolutions of rheas in their inferred coalescent and concatenation trees to concatenation failing in the anomaly zone. By contrast, we find that the coalescent-based resolution of rheas is premised upon extensive gene-tree estimation errors. Furthermore, retroelement insertions contain much more conflict than originally reported and multiple insertion loci support the basal position of rheas found in concatenation trees, while none were reported in the original publication. We demonstrate how even remarkable congruence in phylogenomic studies may be driven by long-branch misplacement of a divergent outgroup, highly incongruent gene trees, differential taxon sampling that can result in gene-tree misrooting errors that bias species-tree inference, and gross homology errors. What was previously interpreted as broad, robustly supported corroboration for a single resolution in coalescent analyses may instead indicate a common bias that taints phylogenomic results across multiple genome-scale datasets. The updated retroelement dataset now supports a species tree with branch lengths that suggest an ancient anomaly zone, and both concatenation and coalescent analyses of the huge nucleotide datasets fail to yield coherent, reliable results in this challenging phylogenetic context.
Collapse
Affiliation(s)
- Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
14
|
Chen L, Jin WT, Liu XQ, Wang XQ. New insights into the phylogeny and evolution of Podocarpaceae inferred from transcriptomic data. Mol Phylogenet Evol 2021; 166:107341. [PMID: 34740782 DOI: 10.1016/j.ympev.2021.107341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Phylogenies of an increasing number of taxa have been resolved with the development of phylogenomics. However, the intergeneric relationships of Podocarpaceae, the second largest family of conifers comprising 19 genera and approximately 187 species mainly distributed in the Southern Hemisphere, have not been well disentangled in previous studies, even when genome-scale data sets were used. Here we used 993 nuclear orthologous groups (OGs) and 54 chloroplast OGs (genes), which were generated from 47 transcriptomes of Podocarpaceae and its sister group Araucariaceae, to reconstruct the phylogeny of Podocarpaceae. Our study completely resolved the intergeneric relationships of Podocarpaceae represented by all extant genera and revealed that topological conflicts among phylogenetic trees could be attributed to synonymous substitutions. Moreover, we found that two morphological traits, fleshy seed cones and flattened leaves, might be important for Podocarpaceae to adapt to angiosperm-dominated forests and thus could have promoted its species diversification. In addition, our results indicate that Podocarpaceae originated in Gondwana in the late Triassic and both vicariance and dispersal have contributed to its current biogeographic patterns. Our study provides the first robust transcriptome-based phylogeny of Podocarpaceae, an evolutionary framework important for future studies of this family.
Collapse
Affiliation(s)
- Luo Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Tao Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin-Quan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Molloy EK, Gatesy J, Springer MS. Theoretical and practical considerations when using retroelement insertions to estimate species trees in the anomaly zone. Syst Biol 2021; 71:721-740. [PMID: 34677617 DOI: 10.1093/sysbio/syab086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
A potential shortcoming of concatenation methods for species tree estimation is their failure to account for incomplete lineage sorting. Coalescent methods address this problem but make various assumptions that, if violated, can result in worse performance than concatenation. Given the challenges of analyzing DNA sequences with both concatenation and coalescent methods, retroelement insertions (RIs) have emerged as powerful phylogenomic markers for species tree estimation. Here, we show that two recently proposed quartet-based methods, SDPquartets and ASTRAL_BP, are statistically consistent estimators of the unrooted species tree topology under the coalescent when RIs follow a neutral infinite-sites model of mutation and the expected number of new RIs per generation is constant across the species tree. The accuracy of these (and other) methods for inferring species trees from RIs has yet to be assessed on simulated data sets, where the true species tree topology is known. Therefore, we evaluated eight methods given RIs simulated from four model species trees, all of which have short branches and at least three of which are in the anomaly zone. In our simulation study, ASTRAL_BP and SDPquartets always recovered the correct species tree topology when given a sufficiently large number of RIs, as predicted. A distance-based method (ASTRID_BP) and Dollo parsimony also performed well in recovering the species tree topology. In contrast, unordered, polymorphism, and Camin-Sokal parsimony typically fail to recover the correct species tree topology in anomaly zone situations with more than four ingroup taxa. Of the methods studied, only ASTRAL_BP automatically estimates internal branch lengths (in coalescent units) and support values (i.e. local posterior probabilities). We examined the accuracy of branch length estimation, finding that estimated lengths were accurate for short branches but upwardly biased otherwise. This led us to derive the maximum likelihood (branch length) estimate for when RIs are given as input instead of binary gene trees; this corrected formula produced accurate estimates of branch lengths in our simulation study, provided that a sufficiently large number of RIs were given as input. Lastly, we evaluated the impact of data quantity on species tree estimation by repeating the above experiments with input sizes varying from 100 to 100 000 parsimony-informative RIs. We found that, when given just 1 000 parsimony-informative RIs as input, ASTRAL_BP successfully reconstructed major clades (i.e clades separated by branches > 0.3 CUs) with high support and identified rapid radiations (i.e. shorter connected branches), although not their precise branching order. The local posterior probability was effective for controlling false positive branches in these scenarios.
Collapse
Affiliation(s)
- Erin K Molloy
- Department of Computer Science, University of Maryland, College Park, College Park, 20742, USA
| | - John Gatesy
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, 92521, USA
| |
Collapse
|
16
|
Zhang C, Zhao Y, Braun EL, Mirarab S. TAPER: Pinpointing errors in multiple sequence alignments despite varying rates of evolution. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology Program University of California San Diego CA USA
| | - Yiming Zhao
- Electrical and Computer Engineering Department University of California San Diego CA USA
| | - Edward L. Braun
- Department of Biology and Genetics Institute University of Florida Gainesville FL USA
| | - Siavash Mirarab
- Electrical and Computer Engineering Department University of California San Diego CA USA
| |
Collapse
|
17
|
Smith BT, Mauck WM, Benz BW, Andersen MJ. Uneven Missing Data Skew Phylogenomic Relationships within the Lories and Lorikeets. Genome Biol Evol 2021; 12:1131-1147. [PMID: 32470111 PMCID: PMC7486955 DOI: 10.1093/gbe/evaa113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 01/21/2023] Open
Abstract
The resolution of the Tree of Life has accelerated with advances in DNA sequencing technology. To achieve dense taxon sampling, it is often necessary to obtain DNA from historical museum specimens to supplement modern genetic samples. However, DNA from historical material is generally degraded, which presents various challenges. In this study, we evaluated how the coverage at variant sites and missing data among historical and modern samples impacts phylogenomic inference. We explored these patterns in the brush-tongued parrots (lories and lorikeets) of Australasia by sampling ultraconserved elements in 105 taxa. Trees estimated with low coverage characters had several clades where relationships appeared to be influenced by whether the sample came from historical or modern specimens, which were not observed when more stringent filtering was applied. To assess if the topologies were affected by missing data, we performed an outlier analysis of sites and loci, and a data reduction approach where we excluded sites based on data completeness. Depending on the outlier test, 0.15% of total sites or 38% of loci were driving the topological differences among trees, and at these sites, historical samples had 10.9× more missing data than modern ones. In contrast, 70% data completeness was necessary to avoid spurious relationships. Predictive modeling found that outlier analysis scores were correlated with parsimony informative sites in the clades whose topologies changed the most by filtering. After accounting for biased loci and understanding the stability of relationships, we inferred a more robust phylogenetic hypothesis for lories and lorikeets.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, New York
| | - William M Mauck
- Department of Ornithology, American Museum of Natural History, New York, New York.,New York Genome Center, New York, New York
| | - Brett W Benz
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico
| |
Collapse
|
18
|
Walker JF, Smith SA, Hodel RGJ, Moyroud E. Concordance-based approaches for the inference of relationships and molecular rates with phylogenomic datasets. Syst Biol 2021; 71:943-958. [PMID: 34240209 DOI: 10.1093/sysbio/syab052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Gene tree conflict is common and finding methods to analyze and alleviate the negative effects that conflict has on species tree analysis is a crucial part of phylogenomics. This study aims to expand the discussion of inferring species trees and molecular branch lengths when conflict is present. Conflict is typically examined in two ways: inferring its prevalence, and inferring the influence of the individual genes (how strongly one gene supports any given topology compared to an alternative topology). Here, we examine a procedure for incorporating both conflict and the influence of genes in order to infer evolutionary relationships. All supported relationships in the gene trees are analyzed and the likelihood of the genes constrained to these relationships is summed to provide a likelihood for the relationship. Consensus tree assembly is conducted based on the sum of likelihoods for a given relationship and choosing relationships based on the most likely relationship assuming it does not conflict with a relationship that has a higher likelihood score. If it is not possible for all most likely relationships to be combined into a single bifurcating tree then multiple trees are produced and a consensus tree with a polytomy is created. This procedure allows for more influential genes to have greater influence on an inferred relationship, does not assume conflict has arisen from any one source, and does not force the dataset to produce a single bifurcating tree. Using this approach on three empirical datasets, we examine and discuss the relationship between influence and prevalence of gene tree conflict. We find that in one of the datasets, assembling a bifurcating consensus tree solely composed of the most likely relationships is impossible. To account for conflict in molecular rate analysis we also introduce a concordance-based approach to the summary and estimation of branch lengths suitable for downstream comparative analyses. We demonstrate through simulation that even under high levels of stochastic conflict, the mean and median of the concordant rates recapitulate the true molecular rate better than using a supermatrix approach. Using a large phylogenomic dataset, we examine rate heterogeneity across concordant genes with a focus on the branch subtending crown angiosperms. Notably, we find highly variable rates of evolution along the branch subtending crown angiosperms. The approaches outlined here have several limitations, but they also represent some alternative methods for harnessing the complexity of phylogenomic datasets and enrich our inferences of both species' relationships and evolutionary processes.
Collapse
Affiliation(s)
- Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607 U.S.A
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Richard G J Hodel
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
19
|
Collapsing dubiously resolved gene-tree branches in phylogenomic coalescent analyses. Mol Phylogenet Evol 2021; 158:107092. [PMID: 33545272 DOI: 10.1016/j.ympev.2021.107092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 01/15/2023]
Abstract
In two-step coalescent analyses of phylogenomic data, gene-tree topologies are treated as fixed prior to species-tree inference. Although all gene-tree conflict is assumed to be caused by lineage sorting when applying these methods, in empirical datasets much of the conflict can be caused by estimation error. Weakly supported and even arbitrarily resolved clades are important sources of this estimation error for gene trees inferred from few informative characters relative to the number of sampled terminals, and the resulting extraneous conflict among gene trees can negatively impact species-tree inference. In this study, we quantified the relative severity of alternative methods for collapsing gene-tree branches for seven empirical datasets and quantified their effects on species-tree inference. The branch-collapsing methods that we employed were based on the strict consensus of optimal topologies, various bootstrap thresholds, and 0% approximate likelihood ratio test (SH-like aLRT) support. Up to 86% of internal gene-tree branches are dubiously or arbitrarily resolved in reanalyses of these published phylogenomic datasets, and collapsing these branches increased inferred species-tree coalescent branch lengths by up to 455%. For two datasets, the longer inferred branch lengths sometimes impacted inference of anomaly-zone conditions. Although branch-collapsing methods did not consistently affect the species-tree topology, they often increased branch support. The more severe and clearly justified gene-tree branch-collapsing methods, which we recommend be broadly applied for two-step coalescent analyses, are use of the strict consensus in parsimony analyses and the collapse clades with 0% SH-like aLRT support in likelihood analyses. Collapsing dubiously or arbitrarily resolved branches in gene trees sometimes improved congruence between coalescent-based results and concatenation trees. In such cases, we contend that the resolution provided by concatenation should be preferred and that incomplete lineage sorting is a poor explanation for the initial conflict between phylogenetic approaches.
Collapse
|
20
|
Murphy WJ, Foley NM, Bredemeyer KR, Gatesy J, Springer MS. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annu Rev Anim Biosci 2020; 9:29-53. [PMID: 33228377 DOI: 10.1146/annurev-animal-061220-023149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.
Collapse
Affiliation(s)
- William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
21
|
Matschiner M, Böhne A, Ronco F, Salzburger W. The genomic timeline of cichlid fish diversification across continents. Nat Commun 2020; 11:5895. [PMID: 33208747 PMCID: PMC7674422 DOI: 10.1038/s41467-020-17827-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/15/2020] [Indexed: 11/23/2022] Open
Abstract
Cichlid fishes are celebrated for their vast taxonomic, phenotypic, and ecological diversity; however, a central aspect of their evolution - the timeline of their diversification - remains contentious. Here, we generate draft genome assemblies of 14 species representing the global cichlid diversity and integrate these into a new phylogenomic hypothesis of cichlid and teleost evolution that we time-calibrate with 58 re-evaluated fossil constraints and a new Bayesian model accounting for fossil-assignment uncertainty. Our results support cichlid diversification long after the breakup of the supercontinent Gondwana and lay the foundation for precise temporal reconstructions of the exceptional continental cichlid adaptive radiations.
Collapse
Affiliation(s)
- Michael Matschiner
- Zoological Institute, University of Basel, Basel, Switzerland.
- Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Fabrizia Ronco
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Zoological Institute, University of Basel, Basel, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Smith SA, Walker-Hale N, Walker JF. Intragenic Conflict in Phylogenomic Data Sets. Mol Biol Evol 2020; 37:3380-3388. [DOI: 10.1093/molbev/msaa170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Most phylogenetic analyses assume that a single evolutionary history underlies one gene. However, both biological processes and errors can cause intragenic conflict. The extent to which this conflict is present in empirical data sets is not well documented, but if common, could have far-reaching implications for phylogenetic analyses. We examined several large phylogenomic data sets from diverse taxa using a fast and simple method to identify well-supported intragenic conflict. We found conflict to be highly variable between data sets, from 1% to >92% of genes investigated. We analyzed four exemplar genes in detail and analyzed simulated data under several scenarios. Our results suggest that alignment error may be one major source of conflict, but other conflicts remain unexplained and may represent biological signal or other errors. Whether as part of data analysis pipelines or to explore biologically processes, analyses of within-gene phylogenetic signal should become common.
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | | | - Joseph F Walker
- The Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
de Bernadi Schneider A, Jacob Machado D, Guirales S, Janies DA. FLAVi: An Enhanced Annotator for Viral Genomes of Flaviviridae. Viruses 2020; 12:E892. [PMID: 32824044 PMCID: PMC7472247 DOI: 10.3390/v12080892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Responding to the ongoing and severe public health threat of viruses of the family Flaviviridae, including dengue, hepatitis C, West Nile, yellow fever, and Zika, demands a greater understanding of how these viruses emerge and spread. Updated phylogenies are central to this understanding. Most cladograms of Flaviviridae focus on specific lineages and ignore outgroups, hampering the efficacy of the analysis to test ingroup monophyly and relationships. This is due to the lack of annotated Flaviviridae genomes, which has gene content variation among genera. This variation makes analysis without partitioning difficult. Therefore, we developed an annotation pipeline for the genera of Flaviviridae (Flavirirus, Hepacivirus, Pegivirus, and Pestivirus, named "Fast Loci Annotation of Viruses" (FLAVi; http://flavi-web.com/), that combines ab initio and homology-based strategies. FLAVi recovered 100% of the genes in Flavivirus and Hepacivirus genomes. In Pegivirus and Pestivirus, annotation efficiency was 100% except for one partition each. There were no false positives. The combined phylogenetic analysis of multiple genes made possible by annotation has clear impacts over the tree topology compared to phylogenies that we inferred without outgroups or data partitioning. The final tree is largely congruent with previous hypotheses and adds evidence supporting the close phylogenetic relationship between dengue and Zika.
Collapse
Affiliation(s)
- Adriano de Bernadi Schneider
- AntiViral Research Center, Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Sayal Guirales
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (S.G.); (D.A.J.)
| |
Collapse
|
24
|
How to Study Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Systematics Association Special Volumes. Cladistics 2020. [DOI: 10.1017/9781139047678.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Relationship Diagrams. Cladistics 2020. [DOI: 10.1017/9781139047678.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
The Separation of Classification and Phylogenetics. Cladistics 2020. [DOI: 10.1017/9781139047678.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Beyond Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
The Interrelationships of Organisms. Cladistics 2020. [DOI: 10.1017/9781139047678.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
How to Study Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Modern Artificial Methods and Raw Data. Cladistics 2020. [DOI: 10.1017/9781139047678.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Further Myths and More Misunderstandings. Cladistics 2020. [DOI: 10.1017/9781139047678.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Afterword. Cladistics 2020. [DOI: 10.1017/9781139047678.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
Systematics: Exposing Myths. Cladistics 2020. [DOI: 10.1017/9781139047678.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
36
|
Essentialism and Typology. Cladistics 2020. [DOI: 10.1017/9781139047678.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Beyond Classification: How to Study Phylogeny. Cladistics 2020. [DOI: 10.1017/9781139047678.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
How to Study Classification: ‘Total Evidence’ vs. ‘Consensus’, Character Congruence vs. Taxonomic Congruence, Simultaneous Analysis vs. Partitioned Data. Cladistics 2020. [DOI: 10.1017/9781139047678.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
What This Book Is About. Cladistics 2020. [DOI: 10.1017/9781139047678.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
How to Study Classification. Cladistics 2020. [DOI: 10.1017/9781139047678.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
The Cladistic Programme. Cladistics 2020. [DOI: 10.1017/9781139047678.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Index. Cladistics 2020. [DOI: 10.1017/9781139047678.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Parameters of Classification: Ordo Ab Chao. Cladistics 2020. [DOI: 10.1017/9781139047678.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Monothetic and Polythetic Taxa. Cladistics 2020. [DOI: 10.1017/9781139047678.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
45
|
How to Study Classification: Consensus Techniques and General Classifications. Cladistics 2020. [DOI: 10.1017/9781139047678.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Non-taxa or the Absence of –Phyly: Paraphyly and Aphyly. Cladistics 2020. [DOI: 10.1017/9781139047678.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Introduction: Carving Nature at Its Joints, or Why Birds Are Not Dinosaurs and Men Are Not Apes. Cladistics 2020. [DOI: 10.1017/9781139047678.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
48
|
Preface. Cladistics 2020. [DOI: 10.1017/9781139047678.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, Winkler S, Jermiin LS, Skirmuntt EC, Katzourakis A, Burkitt-Gray L, Ray DA, Sullivan KAM, Roscito JG, Kirilenko BM, Dávalos LM, Corthals AP, Power ML, Jones G, Ransome RD, Dechmann DKN, Locatelli AG, Puechmaille SJ, Fedrigo O, Jarvis ED, Hiller M, Vernes SC, Myers EW, Teeling EC. Six reference-quality genomes reveal evolution of bat adaptations. Nature 2020; 583:578-584. [PMID: 32699395 PMCID: PMC8075899 DOI: 10.1038/s41586-020-2486-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/09/2020] [Indexed: 11/08/2022]
Abstract
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lars S Jermiin
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Emilia C Skirmuntt
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Aris Katzourakis
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Lucy Burkitt-Gray
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kevin A M Sullivan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | | | - Megan L Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Andrea G Locatelli
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Sébastien J Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Faculty of Computer Science, Technical University Dresden, Dresden, Germany.
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
50
|
Abstract
Background: Locating the root node of the "tree of life" (ToL) is one of the hardest problems in phylogenetics, given the time depth. The root-node, or the universal common ancestor (UCA), groups descendants into organismal clades/domains. Two notable variants of the two-domains ToL (2D-ToL) have gained support recently. One 2D-ToL posits that eukaryotes (organisms with nuclei) and akaryotes (organisms without nuclei) are sister clades that diverged from the UCA, and that Asgard archaea are sister to other archaea. The other 2D-ToL proposes that eukaryotes emerged from within archaea and places Asgard archaea as sister to eukaryotes. Williams et al. ( Nature Ecol. Evol. 4: 138-147; 2020) re-evaluated the data and methods that support the competing two-domains proposals and concluded that eukaryotes are the closest relatives of Asgard archaea. Critique: The poor resolution of the archaea in their analysis, despite employing amino acid alignments from thousands of proteins and the best-fitting substitution models, contradicts their conclusions. We argue that they overlooked important aspects of estimating evolutionary relatedness and assessing phylogenetic signal in empirical data. Which 2D-ToL is better supported depends on which kind of molecular features are better for resolving common ancestors at the roots of clades - protein-domains or their component amino acids. We focus on phylogenetic character reconstructions necessary to describe the UCA or its closest descendants in the absence of reliable fossils. Clarifications: It is well known that different character types present different perspectives on evolutionary history that relate to different phylogenetic depths. We show that protein structural-domains support more reliable phylogenetic reconstructions of deep-diverging clades in the ToL. Accordingly, Eukaryotes and Akaryotes are better supported clades in a 2D-ToL.
Collapse
Affiliation(s)
| | - David Morrison
- Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|