1
|
Kumar N, Singh H, Giri K, Kumar A, Joshi A, Yadav S, Singh R, Bisht S, Kumari R, Jeena N, Khairakpam R, Mishra G. Physiological and molecular insights into the allelopathic effects on agroecosystems under changing environmental conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:417-433. [PMID: 38633277 PMCID: PMC11018569 DOI: 10.1007/s12298-024-01440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Allelopathy is a natural phenomenon of competing and interfering with other plants or microbial growth by synthesizing and releasing the bioactive compounds of plant or microbial origin known as allelochemicals. This is a sub-discipline of chemical ecology concerned with the effects of bioactive compounds produced by plants or microorganisms on the growth, development and distribution of other plants and microorganisms in natural communities or agricultural systems. Allelochemicals have a direct or indirect harmful effect on one plant by others, especially on the development, survivability, growth, and reproduction of species through the production of chemical inhibitors released into the environment. Cultivation systems that take advantage of allelopathic plants' stimulatory/inhibitory effects on plant growth and development while avoiding allelopathic autotoxicity is critical for long-term agricultural development. Allelopathy is one element that defines plant relationships and is involved in weed management, crop protection, and microbial contact. Besides, the allelopathic phenomenon has also been reported in the forest ecosystem; however, its presence depends on the forest type and the surrounding environment. In the present article, major aspects addressed are (1) literature review on the impacts of allelopathy in agroecosystems and underpinning the research gaps, (2) chemical, physiological, and ecological mechanisms of allelopathy, (3) genetic manipulations, plant defense, economic benefits, fate, prospects and challenges of allelopathy. The literature search and consolidation efforts in this article shall pave the way for future research on the potential application of allelopathic interactions across various ecosystems.
Collapse
Affiliation(s)
- Narendra Kumar
- Forest Research Institute, Dehradun, 248006 India
- Present Address: College of Agriculture, Central Agriculture University (I), Kyrdemkulai, Meghalaya, India
| | - Hukum Singh
- Forest Research Institute, Dehradun, 248006 India
| | - Krishna Giri
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| | - Amit Kumar
- Department of Forestry, North Eastern Hill University, Tura Campus, Tura, 794002 India
| | - Amit Joshi
- Department of Biochemistry, Kalinga University, Naya-Raipur, Chhattisgarh 492101 India
| | | | - Ranjeet Singh
- G.B. Pant National Institute of Himalayan Environment, Itanagar, Arunchal Pradesh, India
| | - Sarita Bisht
- Forest Research Institute, Dehradun, 248006 India
| | - Rama Kumari
- Forest Research Institute, Dehradun, 248006 India
| | - Neha Jeena
- Department of Microbiology, Central University, Rajasthan, 305817 India
| | - Rowndel Khairakpam
- School of Agriculture, Graphic Era Hill University, Dehradun, 248001 India
| | - Gaurav Mishra
- Indian Council of Forestry Research and Education, Dehradun, 248006 India
| |
Collapse
|
2
|
Araniti F, Lupini A, Sorgonà A, Conforti F, Marrelli M, Statti GA, Menichini F, Abenavoli MR. Allelopathic potential of Artemisia arborescens: isolation, identification and quantification of phytotoxic compounds through fractionation-guided bioassays. Nat Prod Res 2012; 27:880-7. [PMID: 22687059 DOI: 10.1080/14786419.2012.691491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aerial part of Artemisia arborescens L. (Asteraceae) was extracted with water and methanol, and both extracts were fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. The potential phytotoxicity of both crude extracts and their fractions were assayed in vitro on seed germination and root growth of lettuce (Lactuca sativa L.), a sensitive species largely employed in the allelopathy studies. The inhibitory activities were analysed by dose-response curves and the ED 50 were estimated. Crude extracts strongly inhibited both germination and root growth processes. The fraction-bioassay indicated the following hierarchy of phytotoxicity for both physiological processes: ethyl acetate ≥ n-hexane > chloroform ≥ n-butanol. On the n-hexane fraction, GC-MS analyses were carried out to characterise and quantify some of the potential allelochemicals. Twenty-one compounds were identified and three of them, camphor, trans-caryophyllene and pulegone were quantified.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Dipartimento di Biotecnologie per il Monitoraggio Agro-Alimentare ed Ambientale (BIOMAA), Università Mediterranea di Reggio Calabria, Facoltà di Agraria - Salita Melissari, I-89124 Reggio, Calabria, RC, Italy
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bioactivity-guided fractionation and analysis of compounds with anti-influenza virus activity from Gardenia jasminoides ellis. Arch Pharm Res 2012; 35:9-17. [DOI: 10.1007/s12272-012-0101-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 11/25/2022]
|