1
|
Liu C, Tan X, Zhan L, Jing Y, Wu W, Ke Z, Jiang H. Palladium-Catalyzed Cascade Cyclization for the Synthesis of Fused Benzo-Aza-Oxa-[5-6-5] Tetracycles. Angew Chem Int Ed Engl 2022; 61:e202215020. [PMID: 36283979 DOI: 10.1002/anie.202215020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/07/2022]
Abstract
A novel and expedient cascade strategy has been demonstrated for the synthesis of fused benzo-aza-oxa-[5-6-5] tetracycles in high yields and diastereoselectivities (up to 20 : 1 dr). The strategy was fulfilled through palladium-catalyzed oxidative convergent assembly of functionally divergent anilines and 3-butenoic acid with five chemical bonds constructed. Coupled with control experiments and deuterium labelled studies, DFT calculations were performed for the proposed mechanism. The utility of the illustrated strategy is emphasized by gram-scale syntheses, late-stage functionalization, and the transformation to a key core of natural products such as martinellic acid and seneciobipyrrolidine.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiangwen Tan
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lingzhi Zhan
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yaru Jing
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wanqing Wu
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huanfeng Jiang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
2
|
Park S, Kang G, Kim C, Kim D, Han S. Collective total synthesis of C4-oxygenated securinine-type alkaloids via stereocontrolled diversifications on the piperidine core. Nat Commun 2022; 13:5149. [PMID: 36056139 PMCID: PMC9440219 DOI: 10.1038/s41467-022-32902-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Securinega alkaloids have fascinated the synthetic chemical community for over six decades. Historically, major research foci in securinega alkaloid synthesis have been on the efficient construction of the fused tetracyclic framework that bears a butenolide moiety and tertiary amine-based heterocycles. These "basic" securinega alkaloids have evolved to undergo biosynthetic oxidative diversifications, especially on the piperidine core. However, a general synthetic solution to access these high-oxidation state securinega alkaloids is lacking. In this study, we have completed the total synthesis of various C4-oxygenated securinine-type alkaloids including securingines A, C, D, securitinine, secu'amamine D, phyllanthine, and 4-epi-phyllanthine. Our synthetic strategy features stereocontrolled oxidation, rearrangement, and epimerization at N1 and C2-C4 positions of the piperidine core within (neo)securinane scaffolds. Our discoveries provide a fundamental synthetic solution to all known securinine-type natural products with various oxidative and stereochemical variations around the central piperidine ring.
Collapse
Affiliation(s)
- Sangbin Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Chansu Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Antien K, Lacambra A, Cossío FP, Massip S, Deffieux D, Pouységu L, Peixoto PA, Quideau S. Bio‐inspired Total Synthesis of Twelve
Securinega
Alkaloids: Structural Reassignments of (+)‐Virosine B and (−)‐Episecurinol A. Chemistry 2019; 25:11574-11580. [DOI: 10.1002/chem.201903122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin Antien
- Univ. Bordeaux, ISM (CNRS-UMR 5255) 351 cours de la Libération 33405 Talence Cedex France
| | - Aitor Lacambra
- Univ. Bordeaux, ISM (CNRS-UMR 5255) 351 cours de la Libération 33405 Talence Cedex France
- Departamento de Química Orgánica IUniversidad del País Vasco Avda. Tolosa 72, Edificio Korta 20018 San Sebastián Spain
| | - Fernando P. Cossío
- Departamento de Química Orgánica IUniversidad del País Vasco Avda. Tolosa 72, Edificio Korta 20018 San Sebastián Spain
| | - Stéphane Massip
- Univ. BordeauxInstitut Européen de Chimie et Biologie (CNRS-UMS 3033) 2 rue Robert Escarpit 33607 Pessac Cedex France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255) 351 cours de la Libération 33405 Talence Cedex France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255) 351 cours de la Libération 33405 Talence Cedex France
| | - Philippe A. Peixoto
- Univ. Bordeaux, ISM (CNRS-UMR 5255) 351 cours de la Libération 33405 Talence Cedex France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255) 351 cours de la Libération 33405 Talence Cedex France
| |
Collapse
|
4
|
Wehlauch R, Gademann K. Securinega
Alkaloids: Complex Structures, Potent Bioactivities, and Efficient Total Syntheses. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Robin Wehlauch
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Karl Gademann
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
5
|
Mao X, Wu LF, Guo HL, Chen WJ, Cui YP, Qi Q, Li S, Liang WY, Yang GH, Shao YY, Zhu D, She GM, You Y, Zhang LZ. The Genus Phyllanthus: An Ethnopharmacological, Phytochemical, and Pharmacological Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:7584952. [PMID: 27200104 PMCID: PMC4854999 DOI: 10.1155/2016/7584952] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
The plants of the genus Phyllanthus (Euphorbiaceae) have been used as traditional medicinal materials for a long time in China, India, Brazil, and the Southeast Asian countries. They can be used for the treatment of digestive disease, jaundice, and renal calculus. This review discusses the ethnopharmacological, phytochemical, and pharmacological studies of Phyllanthus over the past few decades. More than 510 compounds have been isolated, the majority of which are lignins, triterpenoids, flavonoids, and tannins. The researches of their remarkable antiviral, antioxidant, antidiabetic, and anticancer activities have become hot topics. More pharmacological screenings and phytochemical investigations are required to support the traditional uses and develop leading compounds.
Collapse
Affiliation(s)
- Xin Mao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ling-Fang Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hong-Ling Guo
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Jing Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ya-Ping Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qi Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wen-Yi Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guang-Hui Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yan-Yan Shao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Gai-Mei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key laboratory of Chinese Internal Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lan-Zhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|