1
|
Santos MG, Nunes da Silva M, Vasconcelos MW, Carvalho SMP. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. FRONTIERS IN PLANT SCIENCE 2024; 14:1306420. [PMID: 38273947 PMCID: PMC10808555 DOI: 10.3389/fpls.2023.1306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Collapse
Affiliation(s)
- Miguel G. Santos
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| | - Marta Nunes da Silva
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| |
Collapse
|
2
|
Oliveira-Fernandes J, Oliveira-Pinto PR, Mariz-Ponte N, Sousa RMOF, Santos C. Satureja montana and Mentha pulegium essential oils' antimicrobial properties against Pseudomonas syringae pv. actinidiae and elicitor potential through the modulation of kiwifruit hormonal defenses. Microbiol Res 2023; 277:127490. [PMID: 37722185 DOI: 10.1016/j.micres.2023.127490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is responsible for the kiwifruit bacterial canker, the most severe disease of Actinidia spp. The use in agriculture of antibiotics and cooper-based compounds is increasingly being restricted, demanding for new sustainable alternatives to current agrochemicals. We aimed to characterize the anti-Psa potential of essential oils (EOs) of Mentha pulegium and Satureja montana and investigate if they elicit the plant-host hormonal defenses. The EOs were characterized through gas-chromatography with flame ionization detector (GC-FID) and mass spectrometry (MS). Pulegone (78.6%) and carvacrol (43.5%) were the major constituents of M. pulegium and S. montana EO, respectively. Only S. montana EO showed relevant anti-Psa activity in vitro. To evaluate if the EOs also elicited host defenses, in vitro shoots were treated with 2 mg shoot-1 of EO-solution and subsequently inoculated with Psa three days later. Shoots were analyzed 10 min, three days (and 10 min after Psa-inoculation), four and ten days after EO application. The up/down regulation of RNA-transcripts for hormone biosynthesis, Psa biofilm production and virulence genes were quantified by real-time quantitative PCR (RT-qPCR). Phytohormones were quantified by High-Performance Liquid Chromatography (HPLC). S. montana EO showed the most promising results as a defense elicitor, increasing 6-benzylaminopurine (BAP) by 131.07% and reducing indole-3-acetic acid (IAA) levels by 49.19%. Decreases of salicylic acid (SA), and gibberellic acid 3 (GA3) levels by 32.55% and 33.09% respectively and an increase of abscisic acid (ABA) by 85.03%, in M. pulegium EO-treated shoots, revealed some protective post-infection effect. This is the most comprehensive research on the Psa's impact on phytohormones. It also unveils the protective influence of prior EO exposure, clarifying the plant hormonal response to subsequent infections. The results reinforce the hypothesis that carvacrol-rich S. montana EO can be a suitable disease control agent against Psa infection. Its dual action against pathogens and elicitation of host plant defenses make it a promising candidate for incorporation into environmentally friendly disease management approaches. Nonetheless, to fully leverage these promising results, further research is imperative to elucidate the EO mode of action and evaluate the long-term efficacy of this approach.
Collapse
Affiliation(s)
- Juliana Oliveira-Fernandes
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo R Oliveira-Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal; CIBIO-InBIO, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, Vairão, Portugal
| | - Rose M O F Sousa
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; GreenUPorto/Inov4Agro, Faculty of Sciences, University of Porto, Rua Campo Alegre, Porto, Portugal; CITAB/Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Evaluation of the Abilities of Three Kinds of Copper-Based Nanoparticles to Control Kiwifruit Bacterial Canker. Antibiotics (Basel) 2022; 11:antibiotics11070891. [PMID: 35884145 PMCID: PMC9312301 DOI: 10.3390/antibiotics11070891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae reduces kiwifruit crop yield and quality, leading to economic losses. Unfortunately, few agents for its control are available. We prepared three kinds of copper-based nanoparticles and applied them to control kiwifruit bacterial canker. The successful synthesis of Cu(OH)2 nanowires, Cu3(PO4)2 nanosheets, and Cu4(OH)6Cl2 nanoparticles were confirmed by transmission and scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The minimum bactericidal concentrations (MBCs) of the three nanoparticles were 1.56 μg/mL, which exceeded that of the commercial agent thiodiazole copper (MBC > 100 μg/mL). The imaging results indicate that the nanoparticles could interact with bacterial surfaces and kill bacteria by inducing reactive oxygen species’ accumulation and disrupting cell walls. The protective activities of Cu(OH)2 nanowires and Cu3(PO4)2 nanosheets were 59.8% and 63.2%, respectively, similar to thiodiazole copper (64.4%) and better than the Cu4(OH)6Cl2 nanoparticles (40.2%). The therapeutic activity of Cu4(OH)6Cl2 nanoparticles (67.1%) bested that of Cu(OH)2 nanowires (43.9%), Cu3(PO4)2 nanosheets (56.1%), and thiodiazole copper (53.7%). Their therapeutic and protective activities for control of kiwifruit bacterial canker differed in vivo, which was related to their sizes and morphologies. This study suggests these copper-based nanoparticles as alternatives to conventional bactericides for controlling kiwifruit diseases.
Collapse
|
4
|
Mariz-Ponte N, Regalado L, Gimranov E, Tassi N, Moura L, Gomes P, Tavares F, Santos C, Teixeira C. A Synergic Potential of Antimicrobial Peptides against Pseudomonas syringae pv. actinidiae. Molecules 2021; 26:molecules26051461. [PMID: 33800273 PMCID: PMC7962642 DOI: 10.3390/molecules26051461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4-6.2 µM, respectively and MBC 3.4-10 µM for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.
Collapse
Affiliation(s)
- Nuno Mariz-Ponte
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
- CIBIO—Research Centre in Biodiversity and Genetic Resources, In-BIO-Associate Laboratory, Microbial Diversity and Evolution Group, University of Porto (UP), 4485-661 Vairão, Portugal
- Correspondence:
| | - Laura Regalado
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Emil Gimranov
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Natália Tassi
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, 4169-007 Porto, Portugal; (N.T.); (P.G.); (C.T.)
| | - Luísa Moura
- CISAS—Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, 4169-007 Porto, Portugal; (N.T.); (P.G.); (C.T.)
| | - Fernando Tavares
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- CIBIO—Research Centre in Biodiversity and Genetic Resources, In-BIO-Associate Laboratory, Microbial Diversity and Evolution Group, University of Porto (UP), 4485-661 Vairão, Portugal
| | - Conceição Santos
- Biology Department, Faculty of Science, University of Porto (FCUP), 4169-007 Porto, Portugal; (L.R.); (E.G.); (F.T.); (C.S.)
- LAQV-REQUIMTE, Biology Department, Faculty of Science (FCUP), University of Porto, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, 4169-007 Porto, Portugal; (N.T.); (P.G.); (C.T.)
| |
Collapse
|
5
|
Nicoletta P, Laura O, Vanessa M, Valentina L, Angela B, Massimo P, Stefania L. Essential Oils with Inhibitory Capacities on Pseudomonas syringae pv. actinidiae, the Causal Agent of Kiwifruit Bacterial Canker. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajppaj.2018.16.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Carradori S, Chimenti P, Fazzari M, Granese A, Angiolella L. Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus-derived compounds against Candida spp. J Enzyme Inhib Med Chem 2016; 31:189-193. [PMID: 27160150 DOI: 10.1080/14756366.2016.1180596] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The limited arsenal of synthetic antifungal agents and the emergence of resistant Candida strains have prompted the researchers towards the investigation of naturally occurring compounds or their semisynthetic derivatives in order to propose new innovative hit compounds or new antifungal combinations endowed with reduced toxicity. We explored the anti-Candida effects, for the first time, of two bioactive compounds from Crocus sativus stigmas, namely crocin 1 and safranal, and some semisynthetic derivatives of safranal obtaining promising biological results in terms of minimum inhibitory concentration/minimum fungicidal concentration (MIC/MFC) values, synergism and reduction in the germ tube formation. Safranal and its thiosemicarbazone derivative 5 were shown to display good activity against Candida spp.
Collapse
Affiliation(s)
- Simone Carradori
- a Department of Pharmacy , "G. D'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | | | - Marina Fazzari
- c Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| | | | - Letizia Angiolella
- c Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
7
|
Garzoli S, Pirolli A, Vavala E, Di Sotto A, Sartorelli G, Božović M, Angiolella L, Mazzanti G, Pepi F, Ragno R. Multidisciplinary Approach to Determine the Optimal Time and Period for Extracting the Essential Oil from Mentha suaveolens Ehrh. Molecules 2015; 20:9640-55. [PMID: 26016551 PMCID: PMC6272612 DOI: 10.3390/molecules20069640] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/16/2022] Open
Abstract
A comprehensive study on essential oils (EOs) extracted from some Mentha suaveolens L. samples, collected in the countryside of Tarquinia, is reported. In this study, the procedure for essential oil preparation, in terms of harvesting and extraction time, was analyzed in detail for the first time. The GC/MS analysis, carried out on 18 samples, revealed that piperitenone oxide (PO), the main essential oils' chemical constituent, is primarily responsible for the related antifungal activity. Nevertheless, EOs with lower PO content indicate that other chemicals, such as para-cymenene, may participate in exerting the EOs' antifungal effect. Furthermore, the bacterial reverse mutation assay highlighted lack of mutagenic effect in all tested samples. Analysis of the results indicated that for higher activity, the essential oils should be produced with 3 h maximum hydrodistillation, regardless of the harvesting time. Differently, the maximum essential oil yield can be obtained in August and the highest piperitenone oxide percentage is obtainable in July.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technology, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Pirolli
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Elisabetta Vavala
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "Vittorio Erspamer", "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Gianni Sartorelli
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Mijat Božović
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology "Vittorio Erspamer", "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Federico Pepi
- Department of Drug Chemistry and Technology, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, "Sapienza" University, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|