1
|
Wang LX, Wang HL, Huang J, Chu TZ, Peng C, Zhang H, Chen HL, Xiong YA, Tan YZ. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. PHYTOCHEMISTRY 2022; 202:113326. [PMID: 35842031 DOI: 10.1016/j.phytochem.2022.113326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Lignans, with various biological activities, such as antitumor, antioxidant, antibacterial, and antiviral activities, are widely distributed in nature and mainly exist in the xylem of plants. In this paper, we summarized the structures and bioactivities of lignans reported in recent years (2019-2021) from five parts, including (1) a summary and classification of newly reported compounds; (2) the pharmacological activities of lignans; (3) molecular resources and activity distribution; (4) the structure-activity relationships; and (5) the clinical application of lignans. This review covers all undescribed compounds that were reported within the covered period of time and all bioactivity data about previously isolated lignans. The distribution of lignans in different plants and families is visualized, which improves the efficiency of searching for specific molecules. The diverse activities of different types of lignans provide an important reference for the rapid screening of these compounds. Discussion about the structure-activity relationships of lignans provides a direction for the structural modification of skeleton molecules. Combined with the clinical application of such molecules, this work will provide a valuable reference for pharmaceutical chemists.
Collapse
Affiliation(s)
- Li-Xia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Huang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tian-Zhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hu-Lan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong-Ai Xiong
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Zhao J, Zhang F, Xiao X, Wu Z, Hu Q, Jiang Y, Zhang W, Wei S, Ma X, Zhang X. Tripterygium hypoglaucum (Lévl.) Hutch and Its Main Bioactive Components: Recent Advances in Pharmacological Activity, Pharmacokinetics and Potential Toxicity. Front Pharmacol 2021; 12:715359. [PMID: 34887747 PMCID: PMC8650721 DOI: 10.3389/fphar.2021.715359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023] Open
Abstract
Tripterygium hypoglaucum (Lévl.) Hutch (THH) is believed to play an important role in health care and disease treatment according to traditional Chinese medicine. Moreover, it is also the representative of medicine with both significant efficacy and potential toxicity. This characteristic causes THH hard for embracing and fearing. In order to verify its prospect for clinic, a wide variety of studies were carried out in the most recent years. However, there has not been any review about THH yet. Therefore, this review summarized its characteristic of components, pharmacological effect, pharmacokinetics and toxicity to comprehensively shed light on the potential clinical application. More than 120 secondary metabolites including terpenoids, alkaloids, glycosides, sugars, organic acids, oleanolic acid, polysaccharides and other components were found in THH based on phytochemical research. All these components might be the pharmacological bases for immunosuppression, anti-inflammatory and anti-tumour effect. In addition, recent studies found that THH and its bioactive compounds also demonstrated remarkable effect on obesity, insulin resistance, fertility and infection of virus. The main mechanism seemed to be closely related to regulation the balance of immune, inflammation, apoptosis and so on in various disease. Furthermore, the study of pharmacokinetics revealed quick elimination of the main component triptolide. The feature of celastrol was also investigated by several models. Finally, the side effect of THH was thought to be the key for its limitation in clinical application. A series of reports indicated that multiple organs or systems including liver, kidney and genital system were involved in the toxicity. Its potential serious problem in liver was paid specific attention in recent years. In summary, considering the significant effect and potential toxicity of THH as well as its components, the combined medication to inhibit the toxicity, maintain effect might be a promising method for clinical conversion. Modern advanced technology such as structure optimization might be another way to reach the efficacy and safety. Thus, THH is still a crucial plant which remains for further investigation.
Collapse
Affiliation(s)
- Junqi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shizhang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
3
|
Chang Z, Wang Y, Liu C, Smith W, Kong L. Natural Products for Regulating Macrophages M2 Polarization. Curr Stem Cell Res Ther 2021; 15:559-569. [PMID: 31120001 DOI: 10.2174/1574888x14666190523093535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 02/23/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Abstract
Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.
Collapse
Affiliation(s)
- Zhen Chang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| | - Youhan Wang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Chang Liu
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lingbo Kong
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong University, School of Medicine, Xi'an, China
| |
Collapse
|
4
|
Ye HL, Liu Y, Pan J, Guan W, Liu Y, Li XM, Wang SY, Algradi AM, Yang BY, Kuang HX. Three new sesquiterpenoid alkaloids from the roots of Tripterygium wilfordii and its cytotoxicity. Nat Prod Res 2021; 36:3979-3987. [PMID: 33769155 DOI: 10.1080/14786419.2021.1903460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Three new sesquiterpenoid alkaloids, cangorin K (1), dimacroregelines C (2) and D (3), as well as two known sesquiterpenoids (4-5), were isolated from the roots of Tripterygium wilfordii Hook. f. The structures of new compounds were characterised by extensive 1D and 2D NMR spectroscopic analyses, as well as HRESIMS data, and the known compounds were established by 1 D NMR spectra referring to the literatures. Cytotoxicity evaluation of these compounds against two human tumour lines (SMMC7721, LN229) was investigated by CCK-8 assay and displayed that compounds 1-4 showed potent cytotoxicity against SMMC7721 cell with IC50 value in the range of 0.26-9.67 μΜ and compounds 1-5 showed potent cytotoxicity against LN-229 cell with IC50 values in the range of 0.50-7.38 μΜ.
Collapse
Affiliation(s)
- Hong Liang Ye
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Xiao Mao Li
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Si Yi Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Adnan Mohammed Algradi
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Bing You Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| | - Hai Xue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, People's Republic of China
| |
Collapse
|