1
|
Oladeji OS, Odelade KA, Mahal A, Obaidullah AJ, Zainul R. Systematic appraisals of naturally occurring alkaloids from medicinal plants. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7439-7471. [PMID: 38767672 DOI: 10.1007/s00210-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Alkaloids are a complex class of biologically active compounds with a broad spectrum of health-related applications. Particularly the alkaloids of indole, steroidal, terpenoids, isoquinoline, and bisbenzylisoquinoline have been extensively investigated. Ultimately, substantial advancement has been highlighted in the investigation of chemical constituents and the therapeutic benefits of plant alkaloids, particularly during the last ten years. A total of 386 alkaloids have been isolated from over 40 families, including Apocynaceae, Annonaceae, Rubiaceae, Menispermaceae, Ranunculaceae, Buxaceae, Papaveraceae, Magnoliaceae, Rutaceae and Phyllanthaceae. This paper will investigate several alkaloids that have been isolated from botanical medicines as well as offer an in-depth analysis of their cytotoxic properties.
Collapse
Affiliation(s)
- Oluwole Solomon Oladeji
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, Omu-Aran, PMB 1001, Nigeria
- Landmark University Sustainable Development Goals III (SDG 3), Good Health and Well-Being, Landmark University, Omu-Aran, PMB 1001, Nigeria
| | | | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
2
|
Zhang Q, Wei W, Jin X, Lu J, Chen S, Ogaji OD, Wang S, Du K, Chang Y, Li J. Traditional uses, phytochemistry, pharmacology, quality control and clinical studies of Cimicifugae Rhizoma: a comprehensive review. Chin Med 2024; 19:66. [PMID: 38715120 PMCID: PMC11075223 DOI: 10.1186/s13020-024-00937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Cimicifugae Rhizoma, generally known as "Sheng Ma" in China, has great medicinal and dietary values. Cimicifugae Rhizoma is the dried rhizome of Cimicifuga foetida L., Cimicifuga dahurica (Turcz.) Maxim. and Cimicifuga heracleifolia Kom., which has been used to treat wind-heat headache, tooth pain, aphtha, sore throat, prolapse of anus and uterine prolapse in traditional Chinese medicine. This review systematically presents the traditional uses, phytochemistry, pharmacology, clinical studies, quality control and toxicity of Cimicifugae Rhizoma in order to propose scientific evidence for its rational utilization and product development. Herein, 348 compounds isolated or identified from the herb are summarized in this review, mainly including triterpenoid saponins, phenylpropanoids, chromones, alkaloids, terpenoids and flavonoids. The crude extracts and its constituents had various pharmacological properties such as anti-inflammatory, antitumor, antiviral, antioxidant, neuroprotective, anti-osteoporosis and relieving menopausal symptoms. The recent research progress of Cimicifugae Rhizoma in ethnopharmacology, phytochemistry and pharmacological effects demonstrates the effectiveness of its utilization and supplies valuable guidance for further research. This review will provide a basis for the future development and utilization of Cimicifugae Rhizoma.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Shao JR, Ma SJ, Li T, He XQ, Wang ZZ, Xiao W, Yao XS, Li HB, Yu Y. Two new chemical constituents from the leaves of Illicium dunnianum. Nat Prod Res 2023; 37:1233-1240. [PMID: 35075965 DOI: 10.1080/14786419.2021.2004599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One new phenolic glycoside (1) and one new benzofuran derivative (2) were isolated from the leaves of Illicium dunnianum. The structures of these compounds were established by using comprehensive spectroscopic data analysis, including the 1D and 2D NMR, IR, HR-ESI-MS, electronic circular dichroism and comparison with literature data. All isolates were evaluated for the inhibition against the production of NO by LPS-stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Jun-Ran Shao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Sen-Ju Ma
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Xiao-Qing He
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Zhen-Zhong Wang
- Kanion Pharmaceutical Co. Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
| | - Wei Xiao
- Kanion Pharmaceutical Co. Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Kanion Pharmaceutical Co. Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Chen JJ, Cheng MJ, Lee TH, Kuo YH, Lu CT. Secondary Metabolites with Anti-Inflammatory from the Roots of Cimicifuga taiwanensis. Molecules 2022; 27:1657. [PMID: 35268758 PMCID: PMC8912030 DOI: 10.3390/molecules27051657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Cimicifuga is one of the smallest genera in the family Ranunculaceae. Cimicifugae Rhizoma originated from rhizomes of Cimicifuga simplex, and C. dahurica, C. racemosa, C. foetida, and C. heracleifolia have been used as anti-inflammatory, analgesic and antipyretic remedies in Chinese traditional medicine. Inflammation is related to many diseases. Cimicifuga taiwanensis was often used in folk therapy in Taiwan for inflammation. Phytochemical investigation and chromatographic separation of extracts from the roots of Cimicifuga taiwanensis has led to the isolation of six new compounds: cimicitaiwanins A-F (1-6, respectively). The structures of the new compounds were unambiguously elucidated on the basis of extensive spectroscopic data analysis (1D- and 2D-NMR, MS, and UV) and comparison with the literature data. The effect of some isolates on the inhibition of NO production in lipopolysaccharide-activated RAW 264.7 murine macrophages was evaluated. Of the isolates, 3-6 exhibited potent anti-NO production activity, with IC50 values ranging from 6.54 to 24.58 μM, respectively, compared with that of quercetin, an iNOS inhibitor with an IC50 value of 34.58 μM. This is the first report on metabolite from the endemic Taiwanese plant-C. taiwanensis.
Collapse
Affiliation(s)
- Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University (NYCU), Taipei 112, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan;
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Yueh-Hsiung Kuo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan;
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
- ChineseMedicine Research Center, ChinaMedical University, Taichung 404, Taiwan
| | - Chao-Tsen Lu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan;
| |
Collapse
|
5
|
Pang QQ, Li T, Liu LX, Shi DF, Yao XS, Li HB, Yu Y. Systematically identifying the anti-inflammatory constituents of Cimicifuga dahurica by UPLC-Q/TOF-MS combined with network pharmacology analysis. Biomed Chromatogr 2021; 35:e5177. [PMID: 33998678 DOI: 10.1002/bmc.5177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Cimicifuga dahurica (Turcz.) Maxim, which is also regarded as the main origin of "Shengma" in the Chinese Pharmacopoeia, has been used as a cooling and detoxification agent for thousands of years. Our previous phytochemical investigations of C. dahurica extracts (CDEs) led to the isolation of a series of 9,19-cycloalkane triterpenoids and phenolic acids showing a potential anti-inflammatory activity. However, the chemical profiling of CDEs and the material basis of its anti-inflammatory effect in vivo has not been clarified. In the present study, the CDE chemical profile and prototype components in rat plasma were identified via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. As a result, a total of 106 components were identified or tentatively characterized in CDEs, including 54 triterpenoids, 35 phenolic acids, eight amides and nine other type constituents (39 compounds were confirmed with the reference standards). In addition, 20 prototype components (15 triterpenoids and five phenolic acids) were identified in rat plasma, which potentially related to the anti-inflammatory effects of CDEs. Moreover, the anti-inflammatory activities of the main prototype components were further evaluated by their inhibitory effects on the production of NO, as well as the expressions of iNOS and COX-2 in lipopolysaccharide-stimulated RAW264.7 cells, which indicated that 9,19-cycloalkane triterpenoids may play an anti-inflammatory role by down-regulating the expression of iNOS.
Collapse
Affiliation(s)
- Qian-Qian Pang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ling-Xian Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Dan-Feng Shi
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Ma SJ, Li HB, Shao JR, Pang QQ, Li T, Yao XS, Yu Y. Two new chemical constituents from the rhizomes of Actaea dahurica. Nat Prod Res 2020; 36:1789-1796. [PMID: 32911990 DOI: 10.1080/14786419.2020.1817016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A new phenylpropanoid allopyranoside (1) and a new indolinone alkaloid (2) were isolated from the rhizomes of Actaea dahurica (syn. Cimicifuga dahurica). The structures of those two compounds were deduced as cimicifugaside F (1) and 3E,11E-(3-methyl-2-butenylidene acid)-2-indolinone-1-O-β-d-glucopyranoside (2) by detailed analysis of their MS, 1D and 2D NMR data and comparison with literatures. Additionally, the isolates were evaluated for their inhibitory effects on the production of NO by LPS-stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Sen-Ju Ma
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Hai-Bo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang, China
| | - Jun-Ran Shao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Qian-Qian Pang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Ting Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Mou L, Wei M, Wu H, Hu L, Li J, Li G. Structure Elucidation of Two New Norlignans from
Anemone vitifolia
and Their Anti‐Inflammatory Activities. Chem Biodivers 2020; 17:e2000184. [DOI: 10.1002/cbdv.202000184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/14/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Lin‐Yun Mou
- Department of EcologySchool of Life SciencesNanjing University Nanjing 210046 P. R. China
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University Nanjing 210023 P. R. China
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Min Wei
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Hai‐Yan Wu
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Li‐Jiao Hu
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| | - Jian‐Long Li
- Department of EcologySchool of Life SciencesNanjing University Nanjing 210046 P. R. China
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University Nanjing 210023 P. R. China
| | - Gan‐Peng Li
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesState Ethnic Affairs Commission and Ministry of EducationYunnan Minzu University Kunming 650500 P. R. China
| |
Collapse
|