1
|
Hashem AH, Saied E, Badr BM, Dora MS, Diab MA, Abdelaziz AM, Elkady FM, Ali MA, Issa NI, Hamdy ZA, Nafea ME, Khalifa AN, Adel A, Hasib A, Hawela AM, El-Gazzar MM, Nouh MA, Nahool AA, Attia MS. Biosynthesis of trimetallic nanoparticles and their biological applications: a recent review. Arch Microbiol 2025; 207:50. [PMID: 39891715 DOI: 10.1007/s00203-025-04237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Trimetallic nanoparticles (TMNPs) have emerged as a pivotal area of research due to their unique properties and diverse applications across medicine, agriculture, and environmental sciences. This review provides several novel contributions that distinguish it from existing literature on trimetallic nanoparticles (TMNPs). Firstly, it offers a focused exploration of TMNPs, specifically addressing their unique properties and applications, which have been less examined compared to other multimetallic nanoparticles. This targeted analysis fills a significant gap in current research. Secondly, the review emphasizes innovative biosynthesis methods utilizing microorganisms and plant extracts, positioning these green synthesis approaches as environmentally friendly alternatives to traditional chemical methods. This focus aligns with the increasing demand for sustainable practices in nanotechnology. Furthermore, the review integrates discussions on both medical and agricultural applications of TMNPs, highlighting their multifunctional potential across diverse fields. This comprehensive perspective enhances our understanding of how TMNPs can address various challenges. Additionally, the review explores the synergistic effects among the different metals in TMNPs, providing insights into how these interactions can be harnessed to optimize their properties for specific applications. Such discussions are often overlooked in existing studies. Moreover, this review identifies critical research gaps and challenges within the field, outlining future directions that encourage further investigation and innovation in TMNP development. By doing so, it proactively contributes to advancing the field. Finally, the review advocates for interdisciplinary collaboration among material scientists, biologists, and environmental scientists, emphasizing the importance of diverse expertise in enhancing the research and application of TMNPs.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Bahaa M Badr
- Department of Basic and Clinical Medical Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | | | - Mahmoud A Diab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Amer Morsy Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Mohamed Abdelrahman Ali
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Nasser Ibrahim Issa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ziad A Hamdy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed E Nafea
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Nageh Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Albraa Adel
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Abdulrahman Hasib
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Mostafa Hawela
- Biochemistry Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | | | - Mustafa A Nouh
- Research and Development Department, ALSALAM International for Development & Agricultural Investment, Giza, Egypt
| | - Ahmed Abdelhay Nahool
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
2
|
Al-Momani H, Albalawi H, Al Balawi D, Khleifat KM, Aolymat I, Hamed S, Albiss BA, Khasawneh AI, Ebbeni O, Alsheikh A, Zueter AM, Pearson JP, Ward C. Enhanced Efficacy of Some Antibiotics in the Presence of Silver Nanoparticles Against Clinical Isolate of Pseudomonas aeruginosa Recovered from Cystic Fibrosis Patients. Int J Nanomedicine 2024; 19:12461-12481. [PMID: 39611007 PMCID: PMC11602434 DOI: 10.2147/ijn.s479937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Given the increasing frequency of drug-resistant bacteria and the limited progress in developing new antibiotics, it is necessary to explore new methods of combating microbial infections. Nanoparticles, particularly silver nanoparticles (Ag-NPs), have shown exceptional antibacterial characteristics; however, elevated concentrations of Ag-NPs can produce noticeable levels of toxicity in mammalian cells. Aim This study examined the potential synergistic effect of combining a low dosage of Ag-NPs and anti-pseudomonas drugs against Pseudomonas aeruginosa (ATCC strain) and eleven clinical isolates from cystic fibrosis patients. Methods The Ag-NPs were chemically produced by utilizing a seed extract from Peganum Harmala and characterized via ultraviolet-visible spectroscopy and scanning electron microscopy. The broth microdilution technique was utilized to investigate the minimum inhibitory concentration (MIC) of Ag-NPs and eight antibiotics (Piperacillin, Ciprofloxacin, Levofloxacin, Meropenem, Amikacin, Ceftazidime, Gentamicin, Aztreonam). The fractional inhibitory concentration index (FICI) was determined via the checkerboard method to evaluate the synergistic effects of Ag-NPs and various antibiotics. Results The biosynthesized Ag-NPs were uniformly spherical and measured around 15 nm in size. When combined with antibiotics, Ag-NP produced statistically significant reductions in the amount of antibiotics required to completely prevent P. aeruginosa growth for all strains. The findings revealed that the MIC of Ag-NPs was 15 ug/mL for all strains which decreased substantially when administered with antibiotics at a dose of 1.875-7.5 ug/mL. The majority of Ag-NP and antibiotic combinations exhibited a synergistic or partially synergistic impact. This was particularly noticeable in combinations containing Meropenem, Ciprofloxacin, and Aztreonam (in which the FIC index was less than or equal to 0.5). Conclusion The findings revealed that combining Ag-NPs with antibiotics was more effective than using Ag-NPs or antibiotics in isolation and that combinations of Ag-NPs and antimicrobial agents displayed synergistic activity against the majority of strains assessed.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Khaled M Khleifat
- Biology Department, College of Science, Mutah University, Mutah, Karak, 61710, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid, 22110, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ola Ebbeni
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ayman Alsheikh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, 13110, Jordan
| | - AbdelRahman M Zueter
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle Upon Tyne, NE2 4HHUK
| |
Collapse
|
3
|
Tian M, Dong B, Li W, Wang L, Yu H. Applications of Novel Microscale and Nanoscale Materials for Theranostics: From Design to Clinical Translation. Pharmaceutics 2024; 16:1339. [PMID: 39458667 PMCID: PMC11511338 DOI: 10.3390/pharmaceutics16101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The growing global prevalence of chronic diseases has highlighted the limitations of conventional drug delivery methods, which often suffer from non-specific distribution, systemic toxicity, and poor bioavailability. Microscale and nanoscale materials have emerged as innovative solutions, offering enhanced targeting, controlled release, and the convergence of therapeutic and diagnostic functions, referred to as theranostics. This review explores the design principles, mechanisms of action, and clinical applications of various novel micro- and nanomaterials in diseases such as cancer, cardiovascular disorders, and infectious diseases. These materials enable real-time monitoring of therapeutic responses and facilitate precision medicine approaches. Additionally, this paper addresses the significant challenges hindering clinical translation, including biocompatibility, potential toxicity, and regulatory issues. Ongoing clinical trials demonstrate the potential of nanomaterials in theranostic applications, but further research is needed to overcome the barriers to widespread clinical adoption. This work aims to contribute to the acceleration of integrating nanomedicine into clinical practice, ultimately enhancing the efficacy and safety of therapeutic interventions.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.T.); (B.D.); (W.L.)
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Bingzhi Dong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.T.); (B.D.); (W.L.)
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Weiqi Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.T.); (B.D.); (W.L.)
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Liying Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.T.); (B.D.); (W.L.)
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.T.); (B.D.); (W.L.)
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
4
|
Rezghi Rami M, Meskini M, Ebadi Sharafabad B. Fungal-mediated nanoparticles for industrial applications: synthesis and mechanism of action. J Infect Public Health 2024; 17:102536. [PMID: 39276432 DOI: 10.1016/j.jiph.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
The advancement of safe, eco-friendly, and cost-efficient techniques for nanoparticle production is a crucial objective in nanotechnology. Among the various sustainable methods, the biological synthesis of nanoparticles utilizing fungi, bacteria, yeasts, and plants stands out. Fungi, in particular, are well suited for this task because of their capacity to secrete numerous enzymes and streamline subsequent processes. Using fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. The utilization of fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. Fungi have long been acknowledged as adept natural engineers capable of creating a wide array of nanoparticles with distinct properties and applications. This article provides an overview of fungus-mediated nanoparticle development, shedding light on the underlying mechanisms of their synthesis and the factors influencing their characteristics. Furthermore, the potential of fungus-mediated nanoparticles in the industrial domain has been explored. These findings emphasize the importance of different fungal species in nanoparticle synthesis, as well as the biocompatibility and environmental friendliness of fungus-mediated nanoparticles. By underscoring the essential role of fungi in connecting natural knowledge with innovative industrial applications, recent progress in enhancing nanoparticle production and optimizing synthesis conditions through fungi has been examined to underscore the feasibility of extensive industrial nanoparticle utilization via fungi.
Collapse
Affiliation(s)
- Mina Rezghi Rami
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran.
| | - Maryam Meskini
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Li Y, Vulpe C, Lammers T, Pallares RM. Assessing inorganic nanoparticle toxicity through omics approaches. NANOSCALE 2024; 16:15928-15945. [PMID: 39145718 DOI: 10.1039/d4nr02328e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the last two decades, the development of nanotechnology has resulted in inorganic nanoparticles playing crucial roles in key industries, ranging from healthcare to energy technologies. For instance, gold and silver nanoparticles are widely used in rapid COVID-19 and flu tests, titania and zinc oxide nanoparticles are commonly found in cosmetic products, and superparamagnetic iron oxide nanoparticles have been clinically exploited as contrast agents and anti-anemia medicines. As a result, human exposure to nanomaterials is continuously increasing, raising concerns about their potential adverse health effects. Historically, the study of nanoparticle toxicity has largely relied on macroscopic observations obtained in different in vitro and in vivo models, resulting in readouts such as median lethal dose, biodistribution profile, and/or histopathological assessment. In recent years, omics methodologies, including transcriptomics, epigenomics, proteomics, metabolomics, and lipidomics, are increasingly used to characterize the biological interactions of nanomaterials, providing a better and broader understanding of their impact and mechanisms of toxicity. These approaches have been able to identify important genes and gene products that mediate toxicological effects, as well as endogenous functions and pathways dysregulated by nanoparticles. Omics methods improve our understanding of nanoparticle biology, and unravel mechanistic insights into nanomedicine-based therapies. This review aims to provide a deeper understanding and new perspectives of omics approaches to characterize the toxicity and biological interactions of inorganic nanoparticles, and improve the safety of nanoparticle applications.
Collapse
Affiliation(s)
- Yanchen Li
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
6
|
Kumar P, Thakur N, Kumar K, Kumar S, Dutt A, Thakur VK, Gutiérrez-Rodelo C, Thakur P, Navarrete A, Thakur N. Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons. Coord Chem Rev 2024; 507:215750. [DOI: 10.1016/j.ccr.2024.215750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
8
|
Ganapathy K, Rastogi V, Lora CP, Suriyaprakash J, Alarfaj AA, Hirad AH, Indumathi T. Biogenic synthesis of dopamine/carboxymethyl cellulose/TiO 2 nanoparticles using Psidium guajava leaf extract with enhanced antimicrobial and anticancer activities. Bioprocess Biosyst Eng 2024; 47:131-143. [PMID: 38103080 DOI: 10.1007/s00449-023-02954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The green synthesis of metal oxide nanoparticles (NPs) has garnered considerable attention from researchers due to its utilization of eco-friendly solvents during synthesis and cost-effective approaches. This study focuses on the synthesis of titanium oxide (TiO2) and dopamine (DA) carboxymethyl cellulose (CMC)-doped TiO2 (DA/CMC/TiO2) NP using Psidium guajava leaf extract, while also investigating the structural, optical, and morphological and biocidal potential of the prepared NPs. Significantly larger zones of inhibition were observed for DA/CMC/TiO2 NPs compared to TiO2 against various pathogens. Moreover, the MTT assay was carried out to evaluate the anticancer activity of the prepared samples against MG-63 cells, and the results revealed that DA/CMC/TiO2 NPs exhibited significantly higher level of anticancer activity compared to TiO2. The experimental results demonstrated that DA/CMC/TiO2 NPs exhibited enhanced anticancer activity in a dose-dependent manner when compared to TiO2 NPs.
Collapse
Affiliation(s)
- Kavina Ganapathy
- Department of Biotechnology, School of Sciences, Jain (Deemed-to-be University), Bangalore, 560027, India
| | - Vaibhav Rastogi
- College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, 244001, India
| | - Chandra Prakash Lora
- Department of Chemistry, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, 11451, Riyadh, Saudi Arabia
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, 11451, Riyadh, Saudi Arabia
| | - T Indumathi
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India.
| |
Collapse
|
9
|
Chelliah P, Gupta JK, Mohammad Wabaidur S, Siddiqui MR, Foon Lee S, Lai WC. UV-Light-Driven Photocatalytic Dye Degradation and Antibacterial Potentials of Biosynthesized SiO2 Nanoparticles. WATER 2023; 15:2973. [DOI: 10.3390/w15162973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The present work shows the obtainment of biosynthesized SiO2 with the aid of Jasminum grandiflorum plant extract and the study of its photocatalytic ability in dye degradation and antibacterial activity. The obtained biosynthesized SiO2 nanoparticles were characterized using X-ray diffractometer analysis, Fourier transform infrared spectroscopy analysis, ultraviolet–visible diffuse reflectance spectroscopy, field-emission scanning electron microscope with energy-dispersive X-ray analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The UV-light irradiated photocatalytic activity of the biosynthesized SiO2 nanoparticles was examined using methylene blue dye solution. Its reusability efficiency was determined over 20 cycles and compared with the commercial P-25 titanium dioxide. The bacterial resistivity of the biosynthesized SiO2 nanoparticles was examined using S. aureus and E. coli. The biosynthesized SiO2 nanoparticles showed a high level of crystallinity with no impurities, and they had an optimum crystallite size of 23 nm, a bandgap of 4 eV, no Si-OH groups and quasi-spherical shapes with Si-2p at 104 eV and O-1s at 533 eV. Their photocatalytic activity on methylene blue dye solution could reach 90% degradation after 40 min of UV light exposure, and their reusability efficiency was only 4% less than that of commercial P-25 titanium dioxide. At the concentration of 100 μg/mL, the biosynthesized SiO2 nanoparticles could allow the resistivity of E. coli to become borderline to the resistant range of an antibiotic called Amikacin.
Collapse
Affiliation(s)
| | | | | | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Siaw Foon Lee
- The Eduardo Torroja Institute for Construction Sciences (IETcc—CSIC), 28033 Madrid, Spain
| | - Wen-Cheng Lai
- Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City 640243, Taiwan
| |
Collapse
|
10
|
Tu NTT, Vo TLA, Ho TTT, Dang KPT, Le VD, Minh PN, Dang CH, Tran VT, Dang VS, Chi TTK, Vu-Quang H, Fajgar R, Nguyen TLH, Doan VD, Nguyen TD. Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:781-792. [PMID: 37441001 PMCID: PMC10334209 DOI: 10.3762/bjnano.14.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
We present the in situ synthesis of silver nanoparticles (AgNPs) through ionotropic gelation utilizing the biodegradable saccharides lactose (Lac) and alginate (Alg). The lactose reduced silver ions to form AgNPs. The crystallite structure of the nanocomposite AgNPs@Lac/Alg, with a mean size of 4-6 nm, was confirmed by analytical techniques. The nanocomposite exhibited high catalytic performance in degrading the pollutants methyl orange and rhodamine B. The antibacterial activity of the nanocomposite is pH-dependent, related to the alterations in surface properties of the nanocomposite at different pH values. At pH 6, the nanocomposite demonstrated the highest antibacterial activity. These findings suggest that this nanocomposite has the potential to be tailored for specific applications in environmental and medicinal treatments, making it a highly promising material.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Tu
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - T Lan-Anh Vo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - T Thu-Trang Ho
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Kim-Phuong T Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Phan Nhat Minh
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11000, Vietnam
| | - Vinh-Thien Tran
- Faculty of Environment Ho Chi Minh City University of Natural Resources and Environment, 236B Le Van Sy Street, Tan Binh District, Ho Chi Minh City 700000, Vietnam
| | - Van-Su Dang
- Department of Chemical Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 700000, Vietnam
| | - Tran Thi Kim Chi
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc 14 Viet, Cau Giay District, Hanoi 11000, Vietnam
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Radek Fajgar
- Institute of Chemical Process Fundamentals of the AS CR Prague, Czech Republic
| | - Thi-Lan-Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 11000, Vietnam
| |
Collapse
|
11
|
Li F, Cao Y, Kan X, Li D, Li Y, Huang C, Liu P. AS1411-conjugated doxorubicin-loaded silver nanotriangles for targeted chemo-photothermal therapy of breast cancer. Nanomedicine (Lond) 2023; 18:1077-1094. [PMID: 37650546 DOI: 10.2217/nnm-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Background: Combination therapy has attracted tremendous interest for its great potential in treating cancers. Materials & methods: Based on chitosan-coated silver nanotriangles, polyethylene glycol, AS1411 aptamer and doxorubicin, a multifunctional nanocomposite (AS1411-DOX-AgNTs) was constructed and characterized. Then the photothermal properties, ability to target breast cancer cells and anti-breast cancer effect of AS1411-DOX-AgNTs were evaluated. Results: AS1411-DOX-AgNTs were successfully fabricated and showed excellent photothermal conversion efficiency, breast cancer cell and tumor targeting ability. Compared with single treatments, the combination of AS1411-DOX-AgNTs with near-infrared irradiation possessed the strongest anti-breast cancer effect in vitro and in vivo. Conclusion: AS1411-DOX-AgNTs hold great potential in targeted DOX delivery and combined chemo-photothermal therapy for breast cancer.
Collapse
Affiliation(s)
- Fan Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuyu Cao
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xuechun Kan
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Dongdong Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yan Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Cheng Huang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials & Devices, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Karsli B, Uras IS, Konuklugil B, Demirbas A. Synthesis of Axinyssa digitata Extract Directed Hybrid Nanoflower and Investigation of Its Antimicrobial Activity. IEEE Trans Nanobioscience 2023; 22:523-528. [PMID: 36269917 DOI: 10.1109/tnb.2022.3216355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
First time in this study, the antibacterial effects of Axinyssa digitata sponge extracts and Axinyssa digitata-based cupper hybrid nanoflowers (Cu hNFs) were evaluated. Herein, hybrid nanoflowers (Cu hNFs) were produced by combining Axinyssa digitata sponge extract with Cu2+ ions in Phosphate-buffered saline (PBS) (at pH 7.4) at room temperature for three days using green synthesis method. The shape and size of hNFs were evaluated using scanning electron microscope (SEM) images. Energy dispersive X-ray spectroscopy (EDX) mapping was used to determine the presence of Cu metals and other components. X-ray diffraction (XRD) is a non-destructive analysis method that was used to determine of the crystallographic properties of materials and the phases they contain. Fourier-transform infrared spectroscopy (FT-IR) peaks were used to discuss the presence of functional groups that played a key role in the synthesis. The Cu-hNFs had antimicrobial activity against selected microorganisms. This research is expected to provide knowledge on hNFs synthesis and antimicrobial activity application investigations using Axinyssa digitata rather than biomolecules obtained through costly and time-consuming methods.
Collapse
|
13
|
Farazin A, Mohammadimehr M, Naeimi H. Flexible self-healing nanocomposite based gelatin/tannic acid/acrylic acid reinforced with zinc oxide nanoparticles and hollow silver nanoparticles based on porous silica for rapid wound healing. Int J Biol Macromol 2023; 241:124572. [PMID: 37100326 DOI: 10.1016/j.ijbiomac.2023.124572] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
In this research, gelatin (Ge), tannic acid (TA), acrylic acid (AA) as a matrix are used. Zinc oxide (ZnO) nanoparticles (10, 20, 30, 40 and 50 wt%) and hollow silver nanoparticles along with ascorbic acid (1, 3, and 5 wt%) are considered as reinforcement. In order to prove the functional groups of nanoparticles made from Fourier-transform infrared spectroscopy (FTIR), and determine the existing phases of the powders in the hydrogel, X-ray diffraction (XRD) is used, also to investigate the morphology, size, and porosity of the holes and in the scaffolds, scanning electron microscope analysis is used (FESEM). Then, mechanical tests such as tension and compression test are performed to determine the most optimal state of the composite. Also, the antibacterial test is performed for the manufactured powders and hydrogel, as well as the toxicity test for the fabricated hydrogel. The results show that the sample (30 wt% of zinc oxide and 5 wt% of hollow nanoparticles) is the most optimal hydrogel based on mechanical tests and biological properties.
Collapse
Affiliation(s)
- Ashkan Farazin
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran
| | - Mehdi Mohammadimehr
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box 87317-53153, Kashan, Iran.
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| |
Collapse
|
14
|
Alavi M, Ashengroph M. Mycosynthesis of AgNPs: mechanisms of nanoparticle formation and antimicrobial activities. Expert Rev Anti Infect Ther 2023; 21:355-363. [PMID: 36786717 DOI: 10.1080/14787210.2023.2179988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION The inactivation and eradication of multidrug-resistant bacteria, fungi, and viruses by conventional antibiotics and drugs have not been effective. The hindering of these pathogens in hospital-acquired infections caused by Gram-positive bacteria, particularly strains of S. aureus including community-acquired methicillin-resistant (CA-MRSA) and hospital-acquired MRSA (HA-MRSA), is more complicated, specifically in patients having immunodeficiency syndrome. RESEARCH AREA Bare and functionalized metal and metal oxide nanoparticles (NPs) specifically silver (Ag) NPs have shown significant antibacterial, antifungal, and antiviral activities. Biosynthesis of AgNPs by fungal species in media of cell-free filtrate and culture supernatant can provide new therapeutic properties compared to physical and chemical methods. EXPERT OPINION Various primary and secondary metabolites of fungi such as phytochelatin, trichodin, primin, altersolanol A, periconicin A, brefeldin A, graphislactone A, phomol, polysaccharides (chitin, glucans, and galactomannans), and enzymes can contribute to reducing Ag+ ions and stabilizing NPs in one-pot method. These natural compounds can augment antimicrobial activity by bypassing multidrug-resistance barriers in viruses, bacteria, and fungi. Controlling physicochemical properties and effective therapeutic concentration of fungal AgNPs can be the determinative parameters for the antimicrobial strength of AgNPs. Therefore, in this review, we have tried to address the antimicrobial mechanisms and physicochemical properties of fungal synthesized AgNPs.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran.,Nanobiotechnology Laboratory, Department of Biology, Razi University, Kermanshah, Iran
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
15
|
Channab BE, El Idrissi A, Zahouily M, Essamlali Y, White JC. Starch-based controlled release fertilizers: A review. Int J Biol Macromol 2023; 238:124075. [PMID: 36940767 DOI: 10.1016/j.ijbiomac.2023.124075] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Starch, as a widely available renewable resource, has the potential to be used in the production of controlled-release fertilizers (CRFs) that support sustainable agriculture. These CRFs can be formed by incorporating nutrients through coating or absorption, or by chemically modifying the starch to enhance its ability to carry and interact with nutrients. This review examines the various methods of creating starch-based CRFs, including coating, chemical modification, and grafting with other polymers. In addition, the mechanisms of controlled release in starch-based CRFs are discussed. Overall, the potential benefits of using starch-based CRFs in terms of resource efficiency and environmental protection are highlighted.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| |
Collapse
|
16
|
Biogeneration of silver nanoparticles from Cuphea procumbens for biomedical and environmental applications. Sci Rep 2023; 13:790. [PMID: 36646714 PMCID: PMC9842608 DOI: 10.1038/s41598-022-26818-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology is one of the most important and relevant disciplines today due to the specific electrical, optical, magnetic, chemical, mechanical and biomedical properties of nanoparticles. In the present study we demonstrate the efficacy of Cuphea procumbens to biogenerate silver nanoparticles (AgNPs) with antibacterial and antitumor activity. These nanoparticles were synthesized using the aqueous extract of C. procumbens as reducing agent and silver nitrate as oxidizing agent. The Transmission Electron Microscopy demonstrated that the biogenic AgNPs were predominantly quasi-spherical with an average particle size of 23.45 nm. The surface plasmonic resonance was analyzed by ultraviolet visible spectroscopy (UV-Vis) observing a maximum absorption band at 441 nm and Infrared Spectroscopy (FT IR) was used in order to structurally identify the functional groups of some compounds involved in the formation of nanoparticles. The AgNPs demonstrated to have antibacterial activity against the pathogenic bacteria Escherichia coli and Staphylococcus aureus, identifying the maximum zone of inhibition at the concentration of 0.225 and 0.158 µg/mL respectively. Moreover, compared to the extract, AgNPs exhibited better antitumor activity and higher therapeutic index (TI) against several tumor cell lines such as human breast carcinoma MCF-7 (IC50 of 2.56 µg/mL, TI of 27.65 µg/mL), MDA-MB-468 (IC50 of 2.25 µg/mL, TI of 31.53 µg/mL), human colon carcinoma HCT-116 (IC50 of 1.38 µg/mL, TI of 51.07 µg/mL) and melanoma A-375 (IC50 of 6.51 µg/mL, TI of 10.89 µg/mL). This fact is of great since it will reduce the side effects derived from the treatment. In addition, AgNPs revealed to have a photocatalytic activity of the dyes congo red (10-3 M) in 5 min and malachite green (10-3 M) in 7 min. Additionally, the degradation percentages were obtained, which were 86.61% for congo red and 82.11% for malachite green. Overall, our results demonstrated for the first time that C. procumbens biogenerated nanoparticles are excellent candidates for several biomedical and environmental applications.
Collapse
|
17
|
Alshehri EM, Alarfaj NA, Al-Tamimi SA, El-Tohamy MF. Electroanalytical sensors-based biogenic synthesized metal oxide nanoparticles for potentiometric assay of pantoprazole sodium. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2240837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/20/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Eman M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nawal A. Alarfaj
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salma A. Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Wei S, Hao M, Tang Z, Zhou T, Zhao F, Wang Y. Non-medicinal parts of safflower (bud and stem) mediated sustainable green synthesis of silver nanoparticles under ultrasonication: optimization, characterization, antioxidant, antibacterial and anticancer potential. RSC Adv 2022; 12:36115-36125. [PMID: 36545083 PMCID: PMC9756757 DOI: 10.1039/d2ra06414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The flower of safflower is widely used in Chinese herbal preparations and the non-medicinal parts have been applied to develop a sustainable green method, where AgNPs were generated using a mixture of leaf and stem after 12 h of incubation in the dark. In this study, we intend to improve the efficiency of the reduction reaction and optimize this green method by selecting other non-medicinal parts, such as the bud and the pure stem, evaluating the biosynthesis parameters and harnessing the assistance of ultrasonication. Visual observation and UV-vis spectroscopy confirmed that both safflower stem (SS) and bud (SB) mediated AgNPs (SS-AgNPs and SB-AgNPs, respectively) could be produced rapidly over time under ultrasonication. An alkaline solution could accelerate the formation of SS-AgNPs and SB-AgNPs with greater surface loads. SS-AgNPs and SB-AgNPs of small size could be obtained at pH 8.0 and 10.0, respectively. Large concentrations of SS and SB extract are also beneficial for forming AgNPs of small size. It is in acid and neutral solutions that monodispersed SS-AgNPs and SB-AgNPs can be generated. Characterization of selectively synthesized SS-AgNPs and SB-AgNPs demonstrated their spherical shape with the actual size below 30 nm covered by anions. Both SS-AgNPs and SB-AgNPs exhibited potent antioxidant and antibacterial activity. The MIC values of SS-AgNPs for S. aureus and E. coli were 12.5 and 25.0 μg mL-1, respectively, slightly superior to SB-AgNPs. In an in vitro anticancer assay, both kinds of AgNPs show potent toxicity action against the SW620 cell line with IC50 values of 5.4 and 10.6 μg mL-1, respectively. However, only SS-AgNPs reveal an inhibitory action against the HeLa cell line, where the IC50 is found to be 26.8 μg mL-1. These results provide experimental proof that the assistance of ultrasonication and adjusting the process parameters are efficient methods for promoting the reduction reaction, and both SS and SB mediated AgNPs could serve as a promising antioxidant, antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Mengke Hao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Zhishu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Tuan Zhou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese MedicineXianyang 712083China
| | - Fei Zhao
- College of Basic Medical Sciences, Shaanxi University of Chinese MedicineXianyang 712046China
| | - Yinghui Wang
- College of Science, Chang'an UniversityXi'an 710064China
| |
Collapse
|
19
|
Magdy G, Aboelkassim E, El-Domany RA, Belal F. Green synthesis, characterization, and antimicrobial applications of silver nanoparticles as fluorescent nanoprobes for the spectrofluorimetric determination of ornidazole and miconazole. Sci Rep 2022; 12:21395. [PMID: 36496441 PMCID: PMC9741645 DOI: 10.1038/s41598-022-25830-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A green and simple method was proposed for the synthesis of silver nanoparticles (Ag-NPs) using Piper cubeba seed extract as a reducing agent for the first time. The prepared Ag-NPs were characterized using different spectroscopic and microscopic techniques. The obtained Ag-NPs showed an emission band at 320 nm when excited at 280 nm and exhibited strong green fluorescence under UV-light. The produced Ag-NPs were used as fluorescent nanosensors for the spectrofluorimetric determination of ornidazole (ONZ) and miconazole nitrate (MIZ) based on their quantitative quenching of Ag-NPs native fluorescence. The current study introduces the first spectrofluorimetric method for the determination of the studied drugs using Ag-NPs without the need for any pre-derivatization steps. Since the studied drugs don't exhibit native fluorescent properties, the importance of the proposed study is magnified. The proposed method displayed a linear relationship between the fluorescence quenching and the concentrations of the studied drugs over the range of 5.0-80.0 µM and 20.0-100.0 µM with limits of detection (LOD) of 0.35 µM and 1.43 µM for ONZ and MIZ, respectively. The proposed method was applied for the determination of ONZ and MIZ in different dosage forms and human plasma samples with high % recoveries and low % RSD values. The developed method was validated according to ICH guidelines. Moreover, the synthesized Ag-NPs demonstrated significant antimicrobial activities against three different bacterial strains and one candida species. Therefore, the proposed method may hold potential applications in the antimicrobial therapy and related mechanism research.
Collapse
Affiliation(s)
- Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33511, Kafrelsheikh, Egypt.
| | - Eman Aboelkassim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33511, Kafrelsheikh, Egypt
| | - Ramadan A El-Domany
- Microbiology and Immunology Department, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33511, Kafrelsheikh, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| |
Collapse
|
20
|
Burmistrov DE, Serov DA, Simakin AV, Baimler IV, Uvarov OV, Gudkov SV. A Polytetrafluoroethylene (PTFE) and Nano-Al 2O 3 Based Composite Coating with a Bacteriostatic Effect against E. coli and Low Cytotoxicity. Polymers (Basel) 2022; 14:4764. [PMID: 36365757 PMCID: PMC9653981 DOI: 10.3390/polym14214764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
The problem of bacterial contamination through surfaces is important for the food industry. In this regard, there is a growing interest in new coatings based on nanoparticles that can provide a long-term antibacterial effect. Aluminum oxide nanoparticles are a good candidate for such coatings due to their availability and good biocompatibility. In this study, a coating containing aluminum oxide nanoparticles was produced using polytetrafluoroethylene as a polymer matrix-a polymer that exhibits excellent mechanical and physicochemical properties and it is not toxic. The obtained coatings based on "liquid Teflon" containing various concentrations of nanoparticles (0.001-0.1 wt%) prevented the bacterial growth, and they did not exhibit a cytotoxicity on animal cells in vitro. Such coatings are designed not only to provide an antibacterial surface effect, but also to eliminate micro damages on surfaces that inevitably occur in the process of food production.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
21
|
Chandrakar V, Tapadia K, Wag G. Green fabrication of silver nanoparticles via Ipomea carnea latex extract: Antibacterial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Altaf NUH, Naz MY, Shukrullah S, Ghamkhar M, Irfan M, Rahman S, Jakubowski T, Alqurashi EA, Glowacz A, Mahnashi MH. Non-Thermal Plasma Reduction of Ag + Ions into Silver Nanoparticles in Open Atmosphere under Statistically Optimized Conditions for Biological and Photocatalytic Applications. MATERIALS 2022; 15:ma15113826. [PMID: 35683124 PMCID: PMC9181389 DOI: 10.3390/ma15113826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
An environmentally friendly non-thermal DC plasma reduction route was adopted to reduce Ag+ ions at the plasma−liquid interface into silver nanoparticles (AgNPs) under statistically optimized conditions for biological and photocatalytic applications. The efficiency and reactivity of AgNPs were improved by statistically optimizing the reaction parameters with a Box−Behnken Design (BBD). The size of the AgNPs was chosen as a statistical response parameter, while the concentration of the stabilizer, the concentration of the silver salt, and the plasma reaction time were chosen as independent factors. The optimized parameters for the plasma production of AgNPs were estimated using a response surface methodology and a significant model p < 0.05. The AgNPs, prepared under optimized conditions, were characterized and then tested for their antibacterial, antioxidant, and photocatalytic potentials. The optimal conditions for these three activities were 3 mM of stabilizing agent, 5 mM of AgNO3, and 30 min of reaction time. Having particles size of 19 to 37 nm under optimized conditions, the AgNPs revealed a 82.3% degradation of methyl orange dye under UV light irradiation. The antibacterial response of the optimized AgNPs against S. aureus and E. coli strains revealed inhabitation zones of 15 mm and 12 mm, respectively, which demonstrate an antioxidant activity of 81.2%.
Collapse
Affiliation(s)
- Noor Ul Huda Altaf
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
- Correspondence: (N.U.H.A.); (S.S.)
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
- Correspondence: (N.U.H.A.); (S.S.)
| | - Madiha Ghamkhar
- Department of Mathematics and Statistics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.)
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.)
| | - Tomasz Jakubowski
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 B Str., 30-149 Krakow, Poland;
| | - Esam A. Alqurashi
- Department of Chemistry, Faculty of Science, University of Albaha, Albaha 1988, Saudi Arabia;
| | - Adam Glowacz
- Department of Electrical Engineering, Cracow University of Technology, Warszawska 24 Str., 31-155 Krakow, Poland;
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia;
| |
Collapse
|