1
|
Nazari S, Abdelrasoul A. Machine learning models for predicting interaction affinity energy between human serum proteins and hemodialysis membrane materials. Sci Rep 2025; 15:3474. [PMID: 39875505 PMCID: PMC11775177 DOI: 10.1038/s41598-024-83674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Membrane incompatibility poses significant health risks, including severe complications and potential fatality. Surface modification of membranes has emerged as a pivotal technology in the membrane industry, aiming to improve the hemocompatibility and performance of dialysis membranes by mitigating undesired membrane-protein interactions, which can lead to fouling and subsequent protein adsorption. Affinity energy, defined as the strength of interaction between membranes and human serum proteins, plays a crucial role in assessing membrane-protein interactions. These interactions may trigger adverse reactions, potentially harmful to patients. Researchers often rely on trial-and-error approaches to enhance membrane hemocompatibility by reducing these interactions. This study focuses on developing machine learning algorithms that accurately and rapidly predict affinity energy between novel chemical structures of membrane materials and human serum proteins, based on a molecular docking dataset. Various membrane materials with distinct characteristics, chemistry, and orientation are considered in conjunction with different proteins. A comparative analysis of linear regression, K-nearest neighbors regression, decision tree regression, random forest regression, XGBoost regression, lasso regression, and support vector regression is conducted to predict affinity energy. The dataset, comprising 916 records for both training and test segments, incorporates 12 parameters extracted from data points and involves six different proteins. Results indicate that random forest (R² = 0.8987, MSE = 0.36, MAE = 0.45) and XGBoost (R² = 0.83, MSE = 0.49, MAE = 0.49) exhibit comparable predictive performance on the training dataset. However, random forest outperforms XGBoost on the testing dataset. Seven machine learning algorithms for predicting affinity energy are analyzed and compared, with random forest demonstrating superior predictive accuracy. The application of machine learning in predicting affinity energy holds significant promise for researchers and professionals in hemodialysis. These models, by enabling early interventions in hemodialysis membranes, could enhance patient safety and optimize the care of hemodialysis patients.
Collapse
Affiliation(s)
- Simin Nazari
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada
| | - Amira Abdelrasoul
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada.
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada.
| |
Collapse
|
2
|
Veretenenko II, Trofimov YA, Krylov NA, Efremov RG. Nanoscale lipid domains determine the dynamic molecular portraits of mixed DOPC/DOPS bilayers in a fluid phase: A computational insight. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184376. [PMID: 39111381 DOI: 10.1016/j.bbamem.2024.184376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Lateral heterogeneity, or mosaicity, is a fundamental property inherent to cell membranes that is crucial for their functioning. While microscopic inhomogeneities (e.g. rafts) are easily detected experimentally, lipid domains with nanoscale dimensions (nanoclusters of nanodomains, NDs) resist reliable characterization by instrumental methods. In such a case, important insight can be gained via computer modeling. Here, NDs composed of lipid's head groups in the mixed zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylserine (DOPS) bilayers were studied by molecular dynamics. A new algorithm has been developed to identify NDs. Unlike most similar methods, it implicitly considers the heterogeneous distribution of lipid head atomic density and does not require subjectively chosen parameters. In DOPS-rich membranes, lipids form more compact and stable NDs due to strong interlipid interactions. In DOPC-rich systems, NDs arise due to the "packing" effect of weakly bound lipid heads. The clustering picture is related to the physical properties of the bilayer surface: DOPS-rich systems show more pronounced surface heterogeneity of hydrophilic/hydrophobic regions compared to DOPC-rich ones. The results obtained are important for the effective quantitative characterization of the "dynamic molecular portrait" of a membrane surface - its "fingerprint" characterizing dynamical distribution of its physicochemical properties.
Collapse
Affiliation(s)
- Irina I Veretenenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia.
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia; National Research University Higher School of Economics, Moscow 101000, Russia.
| |
Collapse
|
3
|
Lin Q, Jing Y, Yan C, Chen X, Zhang Q, Lin X, Xu Y, Chen B. Design and Application of pH-Responsive Liposomes for Site-Specific Delivery of Cytotoxin from Cobra Venom. Int J Nanomedicine 2024; 19:5381-5395. [PMID: 38859950 PMCID: PMC11164093 DOI: 10.2147/ijn.s461728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Current immunotherapies with unexpected severe side effects and treatment resistance have not resulted in the desired outcomes for patients with melanoma, and there is a need to discover more effective medications. Cytotoxin (CTX) from Cobra Venom has been established to have favorable cytolytic activity and antitumor efficacy and is regarded as a promising novel anticancer agent. However, amphiphilic CTX with excellent anionic phosphatidylserine lipid-binding ability may also damage normal cells. Methods We developed pH-responsive liposomes with a high CTX load (CTX@PSL) for targeted acidic-stimuli release of drugs in the tumor microenvironment. The morphology, size, zeta potential, drug-release kinetics, and preservation stability were characterized. Cell uptake, apoptosis-promoting effects, and cytotoxicity were assessed using MTT assay and flow cytometry. Finally, the tissue distribution and antitumor effects of CTX@PSL were systematically assessed using an in vivo imaging system. Results CTX@PSL exhibited high drug entrapment efficiency, drug loading, stability, and a rapid release profile under acidic conditions. These nanoparticles, irregularly spherical in shape and small in size, can effectively accumulate at tumor sites (six times higher than free CTX) and are rapidly internalized into cancer cells (2.5-fold higher cell uptake efficiency). CTX@PSL displayed significantly stronger cytotoxicity (IC50 0.25 μg/mL) and increased apoptosis in than the other formulations (apoptosis rate 71.78±1.70%). CTX@PSL showed considerably better tumor inhibition efficacy than free CTX or conventional liposomes (tumor inhibition rate 79.78±5.93%). Conclusion Our results suggest that CTX@PSL improves tumor-site accumulation and intracellular uptake for sustained and targeted CTX release. By combining the advantages of CTX and stimuli-responsive nanotechnology, the novel CTX@PSL nanoformulation is a promising therapeutic candidate for cancer treatment.
Collapse
Affiliation(s)
- Qing Lin
- Department of Pharmacy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Yafei Jing
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Cailing Yan
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinyi Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Qiong Zhang
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinhua Lin
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yunlu Xu
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Center of Translational Hematology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Bing Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
4
|
Dubovskii PV, Utkin YN. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins (Basel) 2024; 16:262. [PMID: 38922156 PMCID: PMC11209149 DOI: 10.3390/toxins16060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia;
| | | |
Collapse
|
5
|
Dubovskii PV, Ignatova AA, Alekseeva AS, Starkov VG, Boldyrev IA, Feofanov AV, Utkin YN. Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop. Toxins (Basel) 2022; 15:6. [PMID: 36668826 PMCID: PMC9866941 DOI: 10.3390/toxins15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anastasia A. Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna S. Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ivan A. Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V. Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Bioengineering Department, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
6
|
de Moura GA, de Oliveira JR, Rocha YM, de Oliveira Freitas J, Rodrigues JPV, Ferreira VPG, Nicolete R. Antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom: a systematic review approach. Curr Med Chem 2022; 29:5358-5368. [PMID: 35524668 DOI: 10.2174/0929867329666220507011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND In a scenario of increased pathogens with multidrug resistance phenotypes, it is necessary to seek new pharmacological options. This fact is responsible for an increase in neoplasms and multiresistant parasitic diseases. In turn, snake venom-derived peptides exhibited cytotoxic action on fungal and bacterial strains, possibly presenting activities in resistant tumor cells and parasites. Therefore, the aim of this work is to verify an antitumor and antiparasitic activity of antimicrobial peptides derived from snake venom. METHODS For this purpose, searches were performed in the Pubmed, Embase and Virtual Health Library databases by combining the descriptors peptides, venom and snake with antitumor/ antiparasitic agent and in silico. The inclusion criteria: in vitro and in vivo experimental articles in addition to in silico studies. The exclusion criteria: articles that were out of scope, review articles, abstracts, and letters to the reader. Data extracted: peptide name, peptide sequence, semi-maximal inhibitory concentration, snake species, tumor lineage or parasitic strain, cytotoxicity, in vitro and in vivo activity. RESULTS In total 164 articles were found, of which 14 were used. A total of ten peptides with antiproliferative activity on tumor cells were identified. Among the articles, seven peptides addressed the antiparasitic activity. CONCLUSION In conclusion, snake venom-derived peptides can be considered as potential pharmacological options for parasites and tumors, however more studies are needed to prove their specific activity.
Collapse
Affiliation(s)
| | - Juliana R de Oliveira
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Northeast Network of Biotechnology (RENORBIO), State University of Ceará (UECE), Fortaleza-CE, Brazil
| | - Yasmim M Rocha
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Program in Pharmaceutical Sciences, Federal University of Ceará (UFC), Fortaleza-CE, Brazil
| | | | - João Pedro V Rodrigues
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Program in Pharmaceutical Sciences, Federal University of Ceará (UFC), Fortaleza-CE, Brazil
| | - Vanessa P G Ferreira
- Cruz Foundation (Fiocruz Ceará), Eusébio-CE, Brazil.,Northeast Network of Biotechnology (RENORBIO), State University of Ceará (UECE), Fortaleza-CE, Brazil
| | | |
Collapse
|
7
|
Dubovskii PV, Dubova KM, Bourenkov G, Starkov VG, Konshina AG, Efremov RG, Utkin YN, Samygina VR. Variability in the Spatial Structure of the Central Loop in Cobra Cytotoxins Revealed by X-ray Analysis and Molecular Modeling. Toxins (Basel) 2022; 14:toxins14020149. [PMID: 35202176 PMCID: PMC8880459 DOI: 10.3390/toxins14020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from Naja naja cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both “water” and “membrane” conformations of the central loop (loop-2) were determined by X-ray crystallography. The “water” conformation of the loop was frequently observed. It was similar to the structure of loop-2 of numerous CTs, determined by either NMR spectroscopy in aqueous solution, or the X-ray method. The “membrane” conformation is rare one and, to date has only been observed by NMR for a single cytotoxin 1 from N. oxiana (CT1No) in detergent micelle. Both CT13Nn and CT1No are S-type CTs. Membrane-binding of these CTs probably involves an additional step—the conformational transformation of the loop-2. To confirm this suggestion, we conducted molecular dynamics simulations of both CT1No and CT13Nn in the Highly Mimetic Membrane Model of palmitoiloleoylphosphatidylglycerol, starting with their “water” NMR models. We found that the both toxins transform their “water” conformation of loop-2 into the “membrane” one during the insertion process. This supports the hypothesis that the S-type CTs, unlike their P-type counterparts, require conformational adaptation of loop-2 during interaction with lipid membranes.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
- Correspondence: or
| | - Kira M. Dubova
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 111933 Moscow, Russia; (K.M.D.); (V.R.S.)
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, 22607 Hamburg, Germany;
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Anastasia G. Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141700 Dolgoprudny, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya str., 101000 Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Valeriya R. Samygina
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 111933 Moscow, Russia; (K.M.D.); (V.R.S.)
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
8
|
Dynamic "Molecular Portraits" of Biomembranes Drawn by Their Lateral Nanoscale Inhomogeneities. Int J Mol Sci 2021; 22:ijms22126250. [PMID: 34200697 PMCID: PMC8230387 DOI: 10.3390/ijms22126250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
To date, it has been reliably shown that the lipid bilayer/water interface can be thoroughly characterized by a sophisticated so-called "dynamic molecular portrait". The latter reflects a combination of time-dependent surface distributions of various physicochemical properties, inherent in both model lipid bilayers and natural multi-component cell membranes. One of the most important features of biomembranes is their mosaicity, which is expressed in the constant presence of lateral inhomogeneities, the sizes and lifetimes of which vary in a wide range-from 1 to 103 nm and from 0.1 ns to milliseconds. In addition to the relatively well-studied macroscopic domains (so-called "rafts"), the analysis of micro- and nanoclusters (or domains) that form an instantaneous picture of the distribution of structural, dynamic, hydrophobic, electrical, etc., properties at the membrane-water interface is attracting increasing interest. This is because such nanodomains (NDs) have been proven to be crucial for the proper membrane functioning in cells. Therefore, an understanding with atomistic details the phenomena associated with NDs is required. The present mini-review describes the recent results of experimental and in silico studies of spontaneously formed NDs in lipid membranes. The main attention is paid to the methods of ND detection, characterization of their spatiotemporal parameters, the elucidation of the molecular mechanisms of their formation. Biological role of NDs in cell membranes is briefly discussed. Understanding such effects creates the basis for rational design of new prospective drugs, therapeutic approaches, and artificial membrane materials with specified properties.
Collapse
|
9
|
Dubinnyi MA, Dubovskii PV, Starkov VG, Utkin YN. The omega-loop of cobra cytotoxins tolerates multiple amino acid substitutions. Biochem Biophys Res Commun 2021; 558:141-146. [PMID: 33915327 DOI: 10.1016/j.bbrc.2021.04.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Cobra cytotoxins (CTs), the three-fingered proteins, feature high amino acid sequence homology in the beta-strands and variations in the loop regions. We selected a pair of cytotoxins from Naja kaouthia crude venom to clarify the sequence-structure relationships. Using chromatography and mass spectroscopy, we separated and identified the mixture of cytotoxins 2 and 3, differentiated by the only Val 41/Ala 41 substitution. Here, using natural abundance 13C, 15N NMR-spectroscopy we performed chemical shift assignments of the signals of the both toxins in aqueous solution in the major and minor forms. Combining NOE and chemical shift data, the toxins' spatial structure was determined. Finally, we proved that the tip of the "finger"-2, or the loop-2 of cytotoxins adopts the shape of an omega-loop with a tightly-bound water molecule in its cavity. Comparison with other NMR and X-ray structures of cytotoxins possessing different amino acid sequences reveals spatial similarity in this family of proteins, including the loop-2 region, previously considered to be flexible.
Collapse
Affiliation(s)
- Maxim A Dubinnyi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| | - Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia.
| | - Vladislav G Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| |
Collapse
|
10
|
Antibacterial activity of cardiotoxin-like basic polypeptide from cobra venom. Bioorg Med Chem Lett 2020; 30:126890. [DOI: 10.1016/j.bmcl.2019.126890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
|