1
|
Warda M, Tekin S, Gamal M, Khafaga N, Çelebi F, Tarantino G. Lipid rafts: novel therapeutic targets for metabolic, neurodegenerative, oncological, and cardiovascular diseases. Lipids Health Dis 2025; 24:147. [PMID: 40247292 PMCID: PMC12004566 DOI: 10.1186/s12944-025-02563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Lipid rafts are specialized microdomains within cellular membranes enriched with cholesterol and sphingolipids that play key roles in cellular organization, signaling, and homeostasis. This review highlights their involvement in protein clustering, energy metabolism, oxidative stress responses, inflammation, autophagy, and apoptosis. These findings clarify their influence on signaling, trafficking, and adhesion while interacting with the extracellular matrix, cytoskeleton, and ion channels, making them pivotal in the progression of various diseases. This review further addresses their contributions to immune responses, including autoimmune diseases, chronic inflammation, and cytokine storms. Additionally, their role as entry points for pathogens has been demonstrated, with raft-associated receptors being exploited by viruses and bacteria to increase infectivity and evade immune defenses. Disruptions in lipid raft dynamics are linked to oxidative stress and cellular signaling defects, which contribute to metabolic, neurodegenerative, and cardiovascular diseases. This review underscores their potential as therapeutic targets, discussing innovations such as engineered lipid raft transplantation. Advances in analytical techniques such as mass spectrometry have expanded our understanding of lipid raft composition and dynamics, opening new directions for research. By consolidating the current insights, we highlight the therapeutic potential of lipid rafts and highlight the need for further exploration of their molecular mechanisms.
Collapse
Affiliation(s)
- Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mahmoud Gamal
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Nagwa Khafaga
- Food Hygiene Department, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Egypt
| | - Fikret Çelebi
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy.
| |
Collapse
|
2
|
Huang J, Tiu AC, Jose PA, Yang J. Sorting nexins: role in the regulation of blood pressure. FEBS J 2023; 290:600-619. [PMID: 34847291 PMCID: PMC9149145 DOI: 10.1111/febs.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Sorting nexins (SNXs) are a family of proteins that regulate cellular cargo sorting and trafficking, maintain intracellular protein homeostasis, and participate in intracellular signaling. SNXs are also important in the regulation of blood pressure via several mechanisms. Aberrant expression and dysfunction of SNXs participate in the dysregulation of blood pressure. Genetic studies show a correlation between SNX gene variants and the response to antihypertensive drugs. In this review, we summarize the progress in SNX-mediated regulation of blood pressure, discuss the potential role of SNXs in the pathophysiology and treatment of hypertension, and propose novel strategies for the medical therapy of hypertension.
Collapse
Affiliation(s)
- Juan Huang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| | - Andrew C. Tiu
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| |
Collapse
|
3
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
4
|
Robinson H, Ruelcke JE, Lewis A, Bond CS, Fox AH, Bharti V, Wani S, Cloonan N, Lai A, Margolin D, Li L, Salomon C, Richards RS, Farrell A, Gardiner RA, Parton RG, Cristino AS, Hill MM. Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin Transl Med 2021; 11:e381. [PMID: 33931969 PMCID: PMC8031663 DOI: 10.1002/ctm2.381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Caveolae proteins play diverse roles in cancer development and progression. In prostate cancer, non-caveolar caveolin-1 (CAV1) promotes metastasis, while CAVIN1 attenuates CAV1-induced metastasis. Here, we unveil a novel mechanism linking CAV1 to selective loading of exosomes with metastasis-promoting microRNAs. RESULTS We identify hnRNPK as a CAV1-regulated microRNA binding protein. In the absence of CAVIN1, non-caveolar CAV1 drives localisation of hnRPNK to multi-vesicular bodies (MVBs), recruiting AsUGnA motif-containing miRNAs and causing their release within exosomes. This process is dependent on the lipid environment of membranes as shown by cholesterol depletion using methyl-β-cyclodextrin or by treatment with n-3 polyunsaturated fatty acids. Consistent with a role in bone metastasis, knockdown of hnRNPK in prostate cancer PC3 cells abolished the ability of PC3 extracellular vesicles (EV) to induce osteoclastogenesis, and biofluid EV hnRNPK is elevated in metastatic prostate and colorectal cancer. CONCLUSIONS Taken together, these results support a novel pan-cancer mechanism for CAV1-driven exosomal release of hnRNPK and associated miRNA in metastasis, which is modulated by the membrane lipid environment.
Collapse
Affiliation(s)
- Harley Robinson
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Jayde E. Ruelcke
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Amanda Lewis
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Charles S. Bond
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Archa H. Fox
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
- The Harry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWAAustralia
| | - Vandhana Bharti
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Shivangi Wani
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Andrew Lai
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - David Margolin
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
| | - Li Li
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
| | - Carlos Salomon
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
- Department of Clinical Biochemistry and Immunology, Faculty of PharmacyUniversity of ConcepciónConcepciónChile
| | - Renée S. Richards
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Aine Farrell
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Robert A. Gardiner
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Robert G. Parton
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueenslandAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaQueenslandAustralia
| | - Alexandre S. Cristino
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- Griffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQueenslandAustralia
| | - Michelle M. Hill
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Chhuon C, Zhang SY, Jung V, Lewandowski D, Lipecka J, Pawlak A, Sahali D, Ollero M, Guerrera IC. A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. J Lipid Res 2020; 61:1512-1523. [PMID: 32769147 PMCID: PMC7604723 DOI: 10.1194/jlr.d120000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Shao-Yu Zhang
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- Université Paris-Sud, Paris, France
| | - Joanna Lipecka
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - André Pawlak
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Dil Sahali
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Mario Ollero
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| |
Collapse
|
6
|
Peripheral myelin protein 22 preferentially partitions into ordered phase membrane domains. Proc Natl Acad Sci U S A 2020; 117:14168-14177. [PMID: 32513719 PMCID: PMC7322011 DOI: 10.1073/pnas.2000508117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The preferential partitioning of single-span membrane proteins for ordered phase domains in phase-separated membranes is now reasonably well understood, but little is known about this phase preference for multispan helical membrane proteins. Here, it is shown that the disease-linked tetraspan membrane protein, PMP22, displays a pronounced preference to partition into the ordered phase, a preference that is reversed by disease mutations. This phase preference may be related to the role of PMP22 in cholesterol homeostasis in myelinating Schwann cells, a role that is also known to be disrupted under conditions of Charcot–Marie–Tooth disease (CMTD) peripheral neuropathy caused by pmp22 mutations. The ordered environment of cholesterol-rich membrane nanodomains is thought to exclude many transmembrane (TM) proteins. Nevertheless, some multispan helical transmembrane proteins have been proposed to partition into these environments. Here, giant plasma membrane vesicles (GPMVs) were employed to quantitatively show that the helical tetraspan peripheral myelin protein 22 (PMP22) exhibits a pronounced preference for, promotes the formation of, and stabilizes ordered membrane domains. Neither S-palmitoylation of PMP22 nor its putative cholesterol binding motifs are required for this preference. In contrast, Charcot–Marie–Tooth disease-causing mutations that disrupt the stability of PMP22 tertiary structure reduce or eliminate this preference in favor of the disordered phase. These studies demonstrate that the ordered phase preference of PMP22 derives from global structural features associated with the folded form of this protein, providing a glimpse at the structural factors that promote raft partitioning for multispan helical membrane proteins.
Collapse
|
7
|
Abstract
Excess adiposity is a risk factor for several cancer types. This is likely due to complex mechanisms including alterations in the lipid milieu that plays a pivotal role in multiple aspects of carcinogenesis. Here we consider the direct role of lipids in regulating well-known hallmarks of cancer. Furthermore, we suggest that obesity-associated remodelling of membranes and organelles drives cancer cell proliferation and invasion. Identification of cancer-related lipid-mediated mechanisms amongst the broad metabolic disturbances due to excess adiposity is central to the identification of novel and more efficacious prevention and intervention strategies.
Collapse
Affiliation(s)
- J Molendijk
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, 4006, Australia.
| | | | | | | |
Collapse
|
8
|
Proteomic Analysis of Lipid Rafts from RBL-2H3 Mast Cells. Int J Mol Sci 2019; 20:ijms20163904. [PMID: 31405203 PMCID: PMC6720779 DOI: 10.3390/ijms20163904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are highly ordered membrane microdomains enriched in cholesterol, glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed using qualitative mass spectrometric characterization of the proteome from detergent-resistant membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins had already been described in the RaftProtV2 database and are among highest cited/experimentally validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid modifications and/or transmembrane domains. Classification of identified proteins into functional categories showed that the proteins were associated with cellular membrane compartments, and with some biological and molecular functions, such as regulation, localization, binding, catalytic activity, and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate involvement of identified proteins with various aspects of MC biological processes, especially those related to regulated secretion, organization/stabilization of macromolecules complexes, and signal transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts and provides additional information to elucidate immunoregulatory functions coordinated by raft proteins in MCs.
Collapse
|