1
|
Cross J, Rai A, Fang H, Claridge B, Greening DW. Rapid and in-depth proteomic profiling of small extracellular vesicles for ultralow samples. Proteomics 2024; 24:e2300211. [PMID: 37786918 DOI: 10.1002/pmic.202300211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
The integration of robust single-pot, solid-phase-enhanced sample preparation with powerful liquid chromatography-tandem mass spectrometry (LC-MS/MS) is routinely used to define the extracellular vesicle (EV) proteome landscape and underlying biology. However, EV proteome studies are often limited by sample availability, requiring upscaling cell cultures or larger volumes of biofluids to generate sufficient materials. Here, we have refined data independent acquisition (DIA)-based MS analysis of EV proteome by optimizing both protein enzymatic digestion and chromatography gradient length (ranging from 15 to 44 min). Our short 15 min gradient length can reproducibly quantify 1168 (from as little as 500 pg of EV peptides) to 3882 proteins groups (from 50 ng peptides), including robust quantification of 22 core EV marker proteins. Compared to data-dependent acquisition, DIA achieved significantly greater EV proteome coverage and quantification of low abundant protein species. Moreover, we have achieved optimal magnetic bead-based sample preparation tailored to low quantities of EVs (0.5 to 1 µg protein) to obtain sufficient peptides for MS quantification of 1908-2340 protein groups. We demonstrate the power and robustness of our pipeline in obtaining sufficient EV proteomes granularity of different cell sources to ascertain known EV biology. This underscores the capacity of our optimised workflow to capture precise and comprehensive proteome of EVs, especially from ultra-low sample quantities (sub-nanogram), an important challenge in the field where obtaining in-depth proteome information is essential.
Collapse
Affiliation(s)
- Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation (CaRTI), School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation (CaRTI), School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Cardiovascular Research, Translation and Implementation (CaRTI), School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Chen X, Song X, Li J, Wang J, Yan Y, Yang F. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analyses of small extracellular vesicles from C2C12 myoblasts identify specific PTM patterns in ligand-receptor interactions. Cell Commun Signal 2024; 22:273. [PMID: 38755675 PMCID: PMC11097525 DOI: 10.1186/s12964-024-01640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Small extracellular vesicles (sEVs) are important mediators of intercellular communication by transferring of functional components (proteins, RNAs, and lipids) to recipient cells. Some PTMs, including phosphorylation and N-glycosylation, have been reported to play important role in EV biology, such as biogenesis, protein sorting and uptake of sEVs. MS-based proteomic technology has been applied to identify proteins and PTM modifications in sEVs. Previous proteomic studies of sEVs from C2C12 myoblasts, an important skeletal muscle cell line, focused on identification of proteins, but no PTM information on sEVs proteins is available.In this study, we systematically analyzed the proteome, phosphoproteome, and N-glycoproteome of sEVs from C2C12 myoblasts with LC-MS/MS. In-depth analyses of the three proteomic datasets revealed that the three proteomes identified different catalogues of proteins, and PTMomic analysis could expand the identification of cargos in sEVs. At the proteomic level, a high percentage of membrane proteins, especially tetraspanins, was identified. The sEVs-derived phosphoproteome had a remarkably high level of tyrosine-phosphorylated sites. The tyrosine-phosphorylated proteins might be involved with EPH-Ephrin signaling pathway. At the level of N-glycoproteomics, several glycoforms, such as complex N-linked glycans and sialic acids on glycans, were enriched in sEVs. Retrieving of the ligand-receptor interaction in sEVs revealed that extracellular matrix (ECM) and cell adhesion molecule (CAM) represented the most abundant ligand-receptor pairs in sEVs. Mapping the PTM information on the ligands and receptors revealed that N-glycosylation mainly occurred on ECM and CAM proteins, while phosphorylation occurred on different categories of receptors and ligands. A comprehensive PTM map of ECM-receptor interaction and their components is also provided.In summary, we conducted a comprehensive proteomic and PTMomic analysis of sEVs of C2C12 myoblasts. Integrated proteomic, phosphoproteomic, and N-glycoproteomic analysis of sEVs might provide some insights about their specific uptake mechanism.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xi Song
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaran Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yumeng Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ren X, Cheng Z, He J, Yao X, Liu Y, Cai K, Li M, Hu Y, Luo Z. Inhibition of glycolysis-driven immunosuppression with a nano-assembly enhances response to immune checkpoint blockade therapy in triple negative breast cancer. Nat Commun 2023; 14:7021. [PMID: 37919262 PMCID: PMC10622423 DOI: 10.1038/s41467-023-42883-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Immune-checkpoint inhibitors (ICI) are promising modalities for treating triple negative breast cancer (TNBC). However, hyperglycolysis, a hallmark of TNBC cells, may drive tumor-intrinsic PD-L1 glycosylation and boost regulatory T cell function to impair ICI efficacy. Herein, we report a tumor microenvironment-activatable nanoassembly based on self-assembled aptamer-polymer conjugates for the targeted delivery of glucose transporter 1 inhibitor BAY-876 (DNA-PAE@BAY-876), which remodels the immunosuppressive TME to enhance ICI response. Poly β-amino ester (PAE)-modified PD-L1 and CTLA-4-antagonizing aptamers (aptPD-L1 and aptCTLA-4) are synthesized and co-assembled into supramolecular nanoassemblies for carrying BAY-876. The acidic tumor microenvironment causes PAE protonation and triggers nanoassembly dissociation to initiate BAY-876 and aptamer release. BAY-876 selectively inhibits TNBC glycolysis to deprive uridine diphosphate N-acetylglucosamine and downregulate PD-L1 N-linked glycosylation, thus facilitating PD-L1 recognition of aptPD-L1 to boost anti-PD-L1 therapy. Meanwhile, BAY-876 treatment also elevates glucose supply to tumor-residing regulatory T cells (Tregs) for metabolically rewiring them into an immunostimulatory state, thus cooperating with aptCTLA-4-mediated immune-checkpoint inhibition to abolish Treg-mediated immunosuppression. DNA-PAE@BAY-876 effectively reprograms the immunosuppressive microenvironment in preclinical models of TNBC in female mice and provides a distinct approach for TNBC immunotherapy in the clinics.
Collapse
Affiliation(s)
- Xijiao Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Zhuo Cheng
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Jinming He
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
5
|
Changes in Exosomal miRNA Composition in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space. Int J Mol Sci 2021; 22:ijms222312841. [PMID: 34884646 PMCID: PMC8657878 DOI: 10.3390/ijms222312841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
As much as space travel and exploration have been a goal since humankind looked up to the stars, the challenges coming with it are manifold and difficult to overcome. Therefore, researching the changes the human organism undergoes following exposure to weightlessness, on a cellular or a physiological level, is imperative to reach the goal of exploring space and new planets. Building on the results of our CellBox-1 experiment, where thyroid cancer cells were flown to the International Space Station, we are now taking advantage of the newest technological opportunities to gain more insight into the changes in cell–cell communication of these cells. Analyzing the exosomal microRNA composition after several days of microgravity might elucidate some of the proteomic changes we have reported earlier. An array scan of a total of 754 miRNA targets revealed more than 100 differentially expressed miRNAs in our samples, many of which have been implicated in thyroid disease in other studies.
Collapse
|
6
|
Rouillard ME, Sutter PA, Durham OR, Willis CM, Crocker SJ. Astrocyte-Derived Extracellular Vesicles (ADEVs): Deciphering their Influences in Aging. Aging Dis 2021; 12:1462-1475. [PMID: 34527422 PMCID: PMC8407882 DOI: 10.14336/ad.2021.0608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are an abundant and dynamic glial cell exclusive to the central nervous system (CNS). In the context of injury, inflammation, and/or diseases of the nervous system, astrocyte responses, termed reactive astrogliosis, are a recognized pathological feature across a range of conditions and diseases. However, the impact of reactive astrogliosis is not uniform and varies by context and duration (time). In recent years, extracellular communication between glial cells via extracellular vesicles (EVs) has garnered interest as a process connected with reactive astrogliosis. In this review, we relate recent findings on astrocyte-derived extracellular vesicles (ADEVs) with a focus on factors that can influence the effects of ADEVs and identified age related changes in the function of ADEVs. Additionally, we will discuss the current limitations of existing experimental approaches and identify questions that highlight areas for growth in this field, which will continue to enhance our understanding of ADEVs in age-associated processes.
Collapse
Affiliation(s)
- Megan E Rouillard
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Pearl A Sutter
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Olivia R Durham
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Cory M Willis
- 2Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Stephen J Crocker
- 1Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
7
|
Wise PM, Neviani P, Riwaldt S, Corydon TJ, Wehland M, Braun M, Krüger M, Infanger M, Grimm D. Changes in Exosome Release in Thyroid Cancer Cells after Prolonged Exposure to Real Microgravity in Space. Int J Mol Sci 2021; 22:ijms22042132. [PMID: 33669943 PMCID: PMC7924847 DOI: 10.3390/ijms22042132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Space travel has always been the man’s ultimate destination. With the ability of spaceflight though, came the realization that exposure to microgravity has lasting effects on the human body. To counteract these, many studies were and are undertaken, on multiple levels. Changes in cell growth, gene, and protein expression have been described in different models on Earth and in space. Extracellular vesicles, and in particular exosomes, are important cell-cell communicators, being secreted from almost all the cells and therefore, are a perfect target to further investigate the underlying reasons of the organism’s adaptations to microgravity. Here, we studied supernatants harvested from the CellBox-1 experiment, which featured human thyroid cancer cells flown to the International Space Station during the SpaceX CRS-3 cargo mission. The initial results show differences in the number of secreted exosomes, as well as in the distribution of subpopulations in regards to their surface protein expression. Notably, alteration of their population regarding the tetraspanin surface expression was observed. This is a promising step into a new area of microgravity research and will potentially lead to the discovery of new biomarkers and pathways of cellular cross-talk.
Collapse
Affiliation(s)
- Petra M. Wise
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA; (P.M.W.); (P.N.)
| | - Paolo Neviani
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA; (P.M.W.); (P.N.)
| | - Stefan Riwaldt
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark;
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Braun
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Raumfahrtmanagement Bonn-Oberkassel, 53227 Bonn, Germany;
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.R.); (M.W.); (M.K.); (M.I.)
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark;
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +45-21379702
| |
Collapse
|
8
|
Poulsen TBG, Karamehmedovic A, Aboo C, Jørgensen MM, Yu X, Fang X, Blackburn JM, Nielsen CH, Kragstrup TW, Stensballe A. Protein array-based companion diagnostics in precision medicine. Expert Rev Mol Diagn 2020; 20:1183-1198. [PMID: 33315478 DOI: 10.1080/14737159.2020.1857734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The development of companion diagnostics (CDx) will increase efficacy and cost-benefit markedly, compared to the currently prevailing trial-and-error approach for treatment. Recent improvements in high-throughput protein technology have resulted in large amounts of predictive biomarkers that are potentially useful components of future CDx assays. Current high multiplex protein arrays are suitable for discovery-based approaches, while low-density and more simple arrays are suitable for use in point-of-care facilities. AREA COVERED This review discusses the technical platforms available for protein array focused CDx, explains the technical details of the platforms and provide examples of clinical use, ranging from multiplex arrays to low-density clinically applicable arrays. We thereafter highlight recent predictive biomarkers within different disease areas, such as oncology and autoimmune diseases. Lastly, we discuss some of the challenges connected to the implementation of CDx assays as point-of-care tests. EXPERT OPINION Recent advances in the field of protein arrays have enabled high-density arrays permitting large biomarker discovery studies, which are beneficial for future CDx assays. The density of protein arrays range from a single protein to proteome-wide arrays, allowing the discovery of protein signatures that may correlate with drug response. Protein arrays will undoubtedly play a key role in future CDx assays.
Collapse
Affiliation(s)
- Thomas B G Poulsen
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Azra Karamehmedovic
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing, China
| | - Xiangdong Fang
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences , China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , China
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences & Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa.,Sengenics Corporation Pte Ltd , Singapore
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet , Copenhagen, Denmark
| | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University , Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital , Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| |
Collapse
|
9
|
Zhang Y, Yang Y, Hu X, Wang Z, Li L, Chen P. PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer 2020; 1875:188492. [PMID: 33321174 DOI: 10.1016/j.bbcan.2020.188492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Protein arginine deiminases (PADs), is a group of calcium-dependent enzymes, which play crucial roles in citrullination, and can catalyze arginine residues into citrulline. This chemical reaction induces citrullinated proteins formation with altered structure and function, leading to numerous pathological diseases, including inflammation and autoimmune diseases. To date, multiple studies have provided solid evidence that PADs are implicated in cancer progression. Nevertheless, the findings on PADs functions in tumors are too complex to understand due to its involvements in variable signaling pathways. The increasing interest in PADs has heightened the need for a comprehensive description for its role in cancer. The present study aims to identify the gaps in present knowledge, including its structures, biological substrates and tissue distribution. Since several irreversible inhibitors for PADs with good potency and selectivity have been explored, the mechanisms on the dysregulation in tumors remain poorly understood. The present study discusses the relationship between PADs and tumor apoptosis, EMT formation and metastasis as well as the implication of neutrophil extracellular traps (NETs) in tumorigenesis. In addition, the potential uses of citrullinated antigens for immunotherapy were proposed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yiqiong Yang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xiuxiu Hu
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Li Li
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
10
|
Capra E, Lange-Consiglio A. The Biological Function of Extracellular Vesicles during Fertilization, Early Embryo-Maternal Crosstalk and Their Involvement in Reproduction: Review and Overview. Biomolecules 2020; 10:E1510. [PMID: 33158009 PMCID: PMC7693816 DOI: 10.3390/biom10111510] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Secretory extracellular vesicles (EVs) are membrane-enclosed microparticles that mediate cell to cell communication in proximity to, or distant from, the cell of origin. Cells release a heterogeneous spectrum of EVs depending on their physiologic and metabolic state. Extracellular vesicles are generally classified as either exosomes or microvesicles depending on their size and biogenesis. Extracellular vesicles mediate temporal and spatial interaction during many events in sexual reproduction and supporting embryo-maternal dialogue. Although many omic technologies provide detailed understanding of the molecular cargo of EVs, the difficulty in obtaining populations of homogeneous EVs makes difficult to interpret the molecular profile of the molecules derived from a miscellaneous EV population. Notwithstanding, molecular characterization of EVs isolated in physiological and pathological conditions may increase our understanding of reproductive and obstetric diseases and assist the search for potential non-invasive biomarkers. Moreover, a more precise vision of the cocktail of biomolecules inside the EVs mediating communication between the embryo and mother could provide new insights to optimize the therapeutic action and safety of EV use.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, 26900 Lodi, Italy;
| | - Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
11
|
Boysen AT, Whitehead B, Stensballe A, Carnerup A, Nylander T, Nejsum P. Fluorescent Labeling of Helminth Extracellular Vesicles Using an In Vivo Whole Organism Approach. Biomedicines 2020; 8:biomedicines8070213. [PMID: 32674418 PMCID: PMC7399896 DOI: 10.3390/biomedicines8070213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
In the last two decades, extracellular vesicles (EVs) from the three domains of life, Archaea, Bacteria and Eukaryotes, have gained increasing scientific attention. As such, the role of EVs in host-pathogen communication and immune modulation are being intensely investigated. Pivotal to EV research is the determination of how and where EVs are taken up by recipient cells and organs in vivo, which requires suitable tracking strategies including labelling. Labelling of EVs is often performed post-isolation which increases risks of non-specific labelling and the introduction of labelling artefacts. Here we exploited the inability of helminths to de novo synthesise fatty acids to enable labelling of EVs by whole organism uptake of fluorescent lipid analogues and the subsequent incorporation in EVs. We showed uptake of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (DOPE-Rho) in Anisakis spp. and Trichuris suis larvae. EVs isolated from the supernatant of Anisakis spp. labelled with DOPE-Rho were characterised to assess the effects of labelling on size, structure and fluorescence of EVs. Fluorescent EVs were successfully taken up by the human macrophage cell line THP-1. This study, therefore, presents a novel staining method that can be utilized by the EV field in parasitology and potentially across multiple species.
Collapse
Affiliation(s)
- Anders T. Boysen
- Department of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark; (A.T.B.); (B.W.)
| | - Bradley Whitehead
- Department of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark; (A.T.B.); (B.W.)
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg 9100, Denmark;
| | - Anna Carnerup
- Department of Chemistry, Physical Chemistry, Lund University, Lund 210 00, Sweden; (A.C.); (T.N.)
| | - Tommy Nylander
- Department of Chemistry, Physical Chemistry, Lund University, Lund 210 00, Sweden; (A.C.); (T.N.)
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark; (A.T.B.); (B.W.)
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne 3010, Australia
- Correspondence: ; Tel.: +45-50541392
| |
Collapse
|
12
|
The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells 2020; 9:cells9051141. [PMID: 32384712 PMCID: PMC7290603 DOI: 10.3390/cells9051141] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.
Collapse
|
13
|
Shukla L, Yuan Y, Shayan R, Greening DW, Karnezis T. Fat Therapeutics: The Clinical Capacity of Adipose-Derived Stem Cells and Exosomes for Human Disease and Tissue Regeneration. Front Pharmacol 2020; 11:158. [PMID: 32194404 PMCID: PMC7062679 DOI: 10.3389/fphar.2020.00158] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Fat grafting is a well-established surgical technique used in plastic surgery to restore deficient tissue, and more recently, for its putative regenerative properties. Despite more frequent use of fat grafting, however, a scientific understanding of the mechanisms underlying either survival or remedial benefits of grafted fat remain lacking. Clinical use of fat grafts for breast reconstruction in tissues damaged by radiotherapy first provided clues regarding the clinical potential of stem cells to drive tissue regeneration. Healthy fat introduced into irradiated tissues appeared to reverse radiation injury (fibrosis, scarring, contracture and pain) clinically; a phenomenon since validated in several animal studies. In the quest to explain and enhance these therapeutic effects, adipose-derived stem cells (ADSCs) were suggested as playing a key role and techniques to enrich ADSCs in fat, in turn, followed. Stem cells - the body's rapid response 'road repair crew' - are on standby to combat tissue insults. ADSCs may exert influences either by releasing paracrine-signalling factors alone or as cell-free extracellular vesicles (EVs, exosomes). Alternatively, ADSCs may augment vital immune/inflammatory processes; or themselves differentiate into mature adipose cells to provide the 'building-blocks' for engineered tissue. Regardless, adipose tissue constitutes an ideal source for mesenchymal stem cells for therapeutic application, due to ease of harvest and processing; and a relative abundance of adipose tissue in most patients. Here, we review the clinical applications of fat grafting, ADSC-enhanced fat graft, fat stem cell therapy; and the latest evolution of EVs and nanoparticles in healing, cancer and neurodegenerative and multiorgan disease.
Collapse
Affiliation(s)
- Lipi Shukla
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia.,Department of Plastic Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Yinan Yuan
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia
| | - Ramin Shayan
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia.,Department of Plastic Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia.,Plastic, Hand and Faciomaxillary Surgery Unit, Alfred Hospital, Prahran, VIC, Australia.,Department of Plastic and Reconstructive Surgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Tara Karnezis
- O'Brien Institute Department, St Vincent's Institute for Medical Research, Fitzroy, VIC, Australia
| |
Collapse
|
14
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
15
|
Bastrup J, Kastaniegaard K, Asuni AA, Volbracht C, Stensballe A. Proteomic and Unbiased Post-Translational Modification Profiling of Amyloid Plaques and Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2020; 73:393-411. [DOI: 10.3233/jad-190652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Joakim Bastrup
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | | | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
16
|
Evans J, Rai A, Nguyen HPT, Poh QH, Elglass K, Simpson RJ, Salamonsen LA, Greening DW. Human Endometrial Extracellular Vesicles Functionally Prepare Human Trophectoderm Model for Implantation: Understanding Bidirectional Maternal-Embryo Communication. Proteomics 2019; 19:e1800423. [PMID: 31531940 DOI: 10.1002/pmic.201800423] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial-embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, a trophectoderm spheroid-based in vitro model mimicking the pre-implantation human embryo is used to recapitulate important functional aspects of blastocyst implantation. Functionally, human endometrial EVs, derived from hormonally treated cells synchronous with implantation, are readily internalized by trophectoderm cells, regulating adhesive and invasive capacity of human trophectoderm spheroids. To gain molecular insights into mechanisms underpinning endometrial EV-mediated enhancement of implantation, quantitative proteomics reveal critical alterations in trophectoderm cellular adhesion networks (cell adhesion molecule binding, cell-cell adhesion mediator activity, and cell adherens junctions) and metabolic and gene expression networks, and the soluble secretome from human trophectodermal spheroids. Importantly, transfer of endometrial EV cargo proteins to trophectoderm to mediate changes in trophectoderm function is demonstrated. This is highlighted by correlation among endometrial EVs, the trophectodermal proteome following EV uptake, and EV-mediated trophectodermal cellular proteome, important for implantation. This work provides an understanding into molecular mechanisms of endometrial EV-mediated regulation of human trophectoderm functions-fundamental in understanding human endometrium-embryo signaling during implantation.
Collapse
Affiliation(s)
- Jemma Evans
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Hong P T Nguyen
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia
| | - Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Kirstin Elglass
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lois A Salamonsen
- Endometrial Remodelling Laboratory, Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, 3800, Australia.,Departments of Physiology and Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3800, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| |
Collapse
|
17
|
Jaiswal R, Sedger LM. Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments. Front Oncol 2019; 9:125. [PMID: 30895170 PMCID: PMC6414436 DOI: 10.3389/fonc.2019.00125] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is a normal feature of most physiological interactions between cells in healthy organisms. While cells communicate directly through intimate physiology contact, other mechanisms of communication exist, such as through the influence of soluble mediators such as growth factors, cytokines and chemokines. There is, however, yet another mechanism of intercellular communication that permits the exchange of information between cells through extracellular vesicles (EVs). EVs are microscopic (50 nm−10 μM) phospholipid bilayer enclosed entities produced by virtually all eukaryotic cells. EVs are abundant in the intracellular space and are present at a cells' normal microenvironment. Irrespective of the EV “donor” cell type, or the mechanism of EV biogenesis and production, or the size and EV composition, cancer cells have the potential to utilize EVs in a manner that enhances their survival. For example, cancer cell EV overproduction confers benefits to tumor growth, and tumor metastasis, compared with neighboring healthy cells. Herein, we summarize the current status of knowledge on different populations of EVs. We review the situations that regulate EV release, and the factors that instruct differential packaging or sorting of EV content. We then highlight the functions of cancer-cell derived EVs as they impact on cancer outcomes, promoting tumor progression, metastases, and the mechanisms by which they facilitate the creation of a pre-metastatic niche. The review finishes by focusing on the beneficial (and challenging) features of tumor-derived EVs that can be adapted and utilized for cancer treatments, including those already being investigated in human clinical trials.
Collapse
Affiliation(s)
- Ritu Jaiswal
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Lisa M Sedger
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|