1
|
Lejay A, Sörelius K. High Sensitivity C reactive Protein: A New Screening Tool for Abdominal Aortic Aneurysm? Eur J Vasc Endovasc Surg 2025:S1078-5884(25)00070-X. [PMID: 39864496 DOI: 10.1016/j.ejvs.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Affiliation(s)
- Anne Lejay
- Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France; UR3072 Biomedicine Research Centre of Strasbourg, Strasbourg, France.
| | - Karl Sörelius
- Department of Vascular Surgery, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dinc R, Ardic N. Role of Potential Biomarkers in Aortic Aneurysms: Does It Hold Promise for Clinical Decision Making? Ann Vasc Surg 2025; 110:349-352. [PMID: 39413998 DOI: 10.1016/j.avsg.2024.07.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 10/18/2024]
Abstract
Aortic aneurysms (AAs) are a life-threatening disease with a mortality rate of up to 80% when they rupture. AA has a multifactorial etiology, including smoking, advanced age, and family history, and has multifaceted pathophysiological mechanisms underlying its formation, mainly including inflammation of the aortic wall, reduction of medial smooth muscle cells, and degradation of the extracellular matrix. It is also a progressive disease. Their treatments are limited to open surgical repair and endovascular aneurysm repair. There is no effective drug treatment. The diagnosis of AA is usually made as a result of a scan performed for another reason. There is no specific diagnostic and prognostic biomarker available, and great efforts are being made on this subject. These studies reveal that in the future, the causal pathophysiological mechanisms for the occurrence and progression of AA will be elucidated and some potential biomarkers will be adopted to facilitate clinical decision-making. This commentary provides a brief contribution to Teng et al.'s analysis of the causal influence between AA and immune-metabolic interactions, and eventually identification of biomarkers.
Collapse
Affiliation(s)
- Rasit Dinc
- INVAMED Medical Innovation Institute, Ankara, Turkey
| | - Nurittin Ardic
- Med-International UK Health Agency Ltd, Leicestershire, UK.
| |
Collapse
|
3
|
Abstract
Aortic aneurysm is a life-threatening condition and mechanisms underlying its formation and progression are still incompletely understood. Omics approach has brought new insights to identify a broad spectrum of biomarkers and better understand cellular and molecular pathways involved. Omics generate a large amount of data and several studies have highlighted that artificial intelligence (AI) and techniques such as machine learning (ML)/deep learning (DL) can be of use in analyzing such complex datasets. However, only a few studies have so far reported the use of ML/DL for omics analysis in aortic aneurysms. The aim of this study is to summarize recent advances on the use of ML/DL for omics analysis to decipher aortic aneurysm pathophysiology and develop patient-tailored risk prediction models. In the light of current knowledge, we discuss current limits and highlight future directions in the field.
Collapse
Affiliation(s)
- Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, Nice, France
- Inserm U1065, C3M, Université Côte d'Azur, Nice, France
| | - Arindam Chaudhuri
- Bedfordshire-Milton Keynes Vascular Centre, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - Bahaa Nasr
- Department of Vascular and Endovascular Surgery, Brest University Hospital, Brest, France
- INSERM UMR 1101, LaTIM, Brest, France
| | - Juliette Raffort
- Inserm U1065, C3M, Université Côte d'Azur, Nice, France
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France
- 3IA Institute, Université Côte d'Azur, Nice, France
| |
Collapse
|
4
|
Rombouts KB, van Merrienboer TAR, Henneman AA, Knol JC, Pham TV, Piersma SR, Jimenez CR, Bogunovic N, van der Velden J, Yeung KK. Insight in the (Phospho)proteome of Vascular Smooth Muscle Cells Derived From Patients With Abdominal Aortic Aneurysm Reveals Novel Disease Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:2226-2243. [PMID: 39206541 DOI: 10.1161/atvbaha.124.321087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is characterized by weakening and dilatation of the aortic wall in the abdomen. The aim of this study was to gain insight into cell-specific mechanisms involved in AAA pathophysiology by analyzing the (phospho)proteome of vascular smooth muscle cells derived from patients with AAA compared with those of healthy donors. METHODS A (phospho)proteomics analysis based on tandem mass spectrometry was performed on vascular smooth muscle cells derived from patients with AAA (n=24) and healthy, control individuals (C-SMC, n=8). Following protein identification and quantification using MaxQuant, integrative inferred kinase activity analysis was used to calculate kinase activity scores. RESULTS Expression differences between vascular smooth muscle cells derived from patients with AAA and healthy, control individuals were predominantly found in proteins involved in ECM (extracellular matrix) remodeling (THSD4 [thrombospondin type-1 domain-containing protein 4] and ADAMTS1 [A disintegrin and metalloproteinase with thrombospondin motifs 1]), energy metabolism (GYS1 [glycogen synthase 1] and PCK2 [phosphoenolpyruvate carboxykinase 2, mitochondrial]), and contractility (CACNA2D1 [calcium voltage-dependent channel subunit α-2/δ-1] and TPM1 [tropomyosin α-1 chain]). Phosphorylation patterns on proteins related to actin cytoskeleton organization dominated the phosphoproteome of vascular smooth muscle cells derived from patients with AAA . Besides, phosphorylation changes on proteins related to energy metabolism (GYS1), contractility (PARVA [α-parvin], PPP1R12A [protein phosphatase 1 regulatory subunit 12A], and CALD1 [caldesmon 1]), and intracellular communication (GJA1 [gap junction α-1 protein]) were seen. Kinase activity of NUAK1 (NUAK family SNF1-like kinase 1), FYN (tyrosine-protein kinase Fyn), MAPK7 (mitogen-activated protein kinase 7), and STK10 (serine/threonine kinase 10) was different in vascular smooth muscle cells derived from patients with AAA compared with those from healthy, control individuals. CONCLUSIONS This study revealed changes in expression and phosphorylation levels of proteins involved in various processes responsible for AAA progression and development (eg, energy metabolism, ECM remodeling, actin cytoskeleton organization, contractility, intracellular communication, and cell adhesion). These newly identified proteins, phosphosites, and related kinases provide further insight into the underlying mechanism of vascular smooth muscle cell dysfunction within the aneurysmal wall. Our omics data thereby offer the opportunity to study the relevance, either as drug target or biomarker, of these proteins in AAA development.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteomics/methods
- Male
- Aged
- Cells, Cultured
- Phosphorylation
- Case-Control Studies
- Proteome
- Female
- Vascular Remodeling
- Middle Aged
- Phosphoproteins/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Energy Metabolism
- Tandem Mass Spectrometry
- Signal Transduction
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Alex A Henneman
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Jaco C Knol
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Thang V Pham
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| |
Collapse
|
5
|
Zhou L, Wu J, Wei Z, Zheng Y. Legumain in cardiovascular diseases. Exp Biol Med (Maywood) 2024; 249:10121. [PMID: 39104790 PMCID: PMC11298360 DOI: 10.3389/ebm.2024.10121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, having become a global public health problem, so the pathophysiological mechanisms and therapeutic strategies of CVDs need further study. Legumain is a powerful enzyme that is widely distributed in mammals and plays an important role in a variety of biological processes. Recent research suggests that legumain is associated with the occurrence and progression of CVDs. In this review, we provide a comprehensive overview of legumain in the pathogenesis of CVDs. The role of legumain in CVDs, such as carotid atherosclerosis, pulmonary hypertension, coronary artery disease, peripheral arterial disease, aortic aneurysms and dissection, is discussed. The potential applications of legumain as a biomarker of these diseases are also explored. By understanding the role of legumain in the pathogenesis of CVDs, we aim to support new therapeutic strategies to prevent or treat these diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Ding R, Liu Z, Wang J, Xia T, Li L. DIA-based quantitative proteomics analysis of plasma exosomes in rat model of allergic rhinitis. Anal Biochem 2024; 688:115463. [PMID: 38244750 DOI: 10.1016/j.ab.2024.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Allergic rhinitis (AR) is a common chronic inflammatory disease characterized by symptoms such as itching, rhinorrhea, sneezing, and nasal obstruction. Despite being classified as an IgE-mediated typeⅠ allergy for many years, the complex pathophysiological mechanism of AR continues to present a challenge in clinical management. The objective of this study was to quantify the proteomics of plasma exosomes using data independent acquisition (DIA) in combination with liquid chromatography-mass spectrometry (LC-MS/MS) to identify the key proteins involved in the development and progression of AR. In the AR rat model, a total of 41 proteins demonstrated significant up-regulation, while 51 proteins were found to be significantly down-regulated. Gene ontology (GO) analysis results indicated that the altered proteins were highly enriched in cellular regulatory processes and enzymatic activity in AR rats. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and protein-protein interaction (PPI) network results revealed that the pivotal proteins C4b, C1qa, C1qc, and Mbl1 might be involved in the metabolic pathways of the immune system in AR through the activation of the complement and coagulation cascades pathway. These proteins could serve as diagnostic markers and therapeutic targets for AR, which is of great significance in understanding the role of exosome proteins in AR.
Collapse
Affiliation(s)
- Ran Ding
- Department of Otolaryngology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Otolaryngology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Wang
- Department of Otolaryngology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Xia
- Department of Otolaryngology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Li
- Department of Otolaryngology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Zhou L, Lu X, Wang X, Huang Z, Wu Y, Zhou L, Meng L, Fu Q, Xia L, Meng S. A Pilot Urinary Proteome Study Reveals Widespread Influences of Circadian Rhythm Disruption by Sleep Deprivation. Appl Biochem Biotechnol 2024; 196:1992-2011. [PMID: 37458940 DOI: 10.1007/s12010-023-04666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 04/23/2024]
Abstract
It is widely accepted that circadian rhythm disruption caused short- or long-term adverse effects on health. Although many previous studies have focused on exploration of the molecular mechanisms, there is no rapid, convenient, and non-invasive method to reveal the influence on health after circadian rhythm disruption. Here, we performed a high-resolution mass spectrometry-based data-independent acquisition (DIA) quantitative urinary proteomic approach in order to explore whether urine could reveal stress changes to those brought about by circadian rhythm disruption after sleep deprivation. After sleep deprivation, the subjects showed a significant increase in both systolic and diastolic blood pressure compared with routine sleep. More than 2000 proteins were quantified and they contained specific proteins for various organs throughout the body. And a total of 177 significantly up-regulated proteins and 68 significantly down-regulated proteins were obtained after sleep deprivation. These differentially expressed proteins (DEPs) were associated with multiple organs and pathways, which reflected widespread influences of sleep deprivation. Besides, machine learning identified a panel of five DEPs (CD300A, SCAMP3, TXN2, EFEMP1, and MYH11) that can effectively discriminate circadian rhythm disruption. Taken together, our results validate the value of urinary proteome in predicting and diagnosing the changes by circadian rhythm disruption.
Collapse
Affiliation(s)
- Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoling Wang
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhixi Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunzhe Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyang Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liyuan Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Fu
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Shuang Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Lv Y, Gu G, Zeng R, Liu Z, Wu J, Zheng Y. Proteomics analysis of carotid body tumor revealed potential mechanisms and molecular differences among Shamblin classifications. Exp Biol Med (Maywood) 2023; 248:1785-1798. [PMID: 37845830 PMCID: PMC10792421 DOI: 10.1177/15353702231199475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/13/2023] [Indexed: 10/18/2023] Open
Abstract
Carotid body tumors (CBTs) are a rare type of paraganglioma, and surgical resection is the only effective treatment. Because of the proximity of CBTs to the carotid artery, jugular vein, and cranial nerve, surgery is extremely difficult, with high risks of hemorrhage and neurovascular injury. The Shamblin classification is used for CBT clinical evaluation; however, molecular mechanisms underlying classification differences remain unclear. This study aimed to investigate pathogenic mechanisms and molecular differences between CBT types. In Shamblin I, II, and III tumors, differentially expressed proteins (DEPs) were identified using direct data-independent acquisition (DIA). DEPs were validated using immunohistochemistry. Proteomics profiling of three Shamblin subtypes differed significantly. Bioinformatics analysis showed that adrenomedullin signaling, protein kinase A signaling, vascular endothelial growth factor (VEGF) signaling, ephrin receptor signaling, gap junction signaling, interleukin (IL)-1 signaling, actin cytoskeleton signaling, endothelin-1 signaling, angiopoietin signaling, peroxisome proliferator-activated receptor (PPAR) signaling, bone morphogenetic protein (BMP) signaling, hypoxia-inducible factor 1-alpha (HIF-1α) signaling, and IL-6 signaling pathways were significantly enriched. Furthermore, 60 DEPs changed significantly with tumor progression. Immunohistochemistry validated several important DEPs, including aldehyde oxidase 1 (AOX1), mediator complex subunit 22 (MED22), carnitine palmitoyltransferase 1A (CPT1A), and heat shock transcription factor 1 (HSF1). To our knowledge, this is the first application of proteomics quantification in CBT. Our results will deepen the understanding of CBT-related pathogenesis and aid in identifying therapeutic targets for CBT treatment.
Collapse
Affiliation(s)
- Yanze Lv
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Guangchao Gu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Rong Zeng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhili Liu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Clinical Research Institute, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Kasprzak MP, Gryszczyńska B, Olasińska-Wiśniewska A, Urbanowicz T, Jawień A, Krasiński Z, Formanowicz D. Blb-NRF2-PON1 Cross-Talk in Abdominal Aortic Aneurysm Progression. Antioxidants (Basel) 2023; 12:1568. [PMID: 37627563 PMCID: PMC10451880 DOI: 10.3390/antiox12081568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The progression of an abdominal aortic aneurysm (AAA) is an important issue, especially as AAA is becoming more common, and potentially life-threatening. This study aimed to understand better the mechanisms underlying AAA progression. For this purpose, we have focused on assessing the selected biomarkers whose potentially common denominator is the NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor, that determines the selected antioxidant enzymes' activation. The study group consisted of 44 AAA male patients (71.41 ± 7.80 years aged). They were divided into three groups based on the aneurism diameter: group I (below 55 mm), group II (between 55 and 70 mm), and group III (over 70 mm). The laboratory analyses of PON1 (paraoxonase-1), NRF2, and HO-1 (heme oxygenase 1) were performed based on commercial ELISA tests; Blb (bilirubin) and hsCRP (high sensitivity C-reactive protein) were assessed during routine morphology examinations after admission to the hospital. Multiple linear regression showed that both bilirubin and NRF2 determined the PON1 concentration in the entire study group. The correlations between the examined parameters within the three studied groups suggest the capitulation of NRF2-dependent antioxidant mechanisms to pro-inflammatory processes. We showed that HO-1 and hsCRP may play a crucial role in the development of inflammation aneurism progression. Moreover, in patients with medium-sized aneurysms, antioxidant mechanisms were depressed, and inflammatory processes began to dominate, which may lead to uncontrolled growth aneurysm rupture. Our study is one of the first to indicate that the chronically activated antioxidant pathway using NRF2 may be a source of reduction stress.
Collapse
Affiliation(s)
- Magdalena P. Kasprzak
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Bogna Gryszczyńska
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Andrzej Jawień
- Department of Vascular and Endovascular Surgery Angiology and Phlebology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery Angiology and Phlebology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants-National Research, Kolejowa 2, 62-064 Plewiska, Poland
| |
Collapse
|
10
|
Liu J, Chen B, Lu H, Chen Q, Li JC. Identification of novel candidate biomarkers for acute myocardial infarction by the Olink proteomics platform. Clin Chim Acta 2023; 548:117506. [PMID: 37549822 DOI: 10.1016/j.cca.2023.117506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Both pathological and normal processes depend on proteins. In this study, plasma protein profiles were analyzed by a novel proximity extension assay (PEA) to identify potential pathogenic mechanisms and diagnostic biomarkers in patients diagnosed with acute myocardial infarction (AMI). METHODS In this study, we identified a total of 92 plasma proteins using the Olink Target 96 Cardiovascular III panel in a cohort consisting of 30 healthy controls (HC), 28 patients with unstable angina (UA) and 30 patients with AMI. Subsequently, we conducted a differential expression analysis to identify protein molecules that were specifically expressed in patients with AMI. To gain insights into the potential functional mechanisms of these differentially expressed molecules, we performed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Following that, the utilization of least absolute shrinkage and selection operator (LASSO) regression facilitated the identification of potential protein biomarkers, enabling the differentiation between AMI and UA. A diagnostic model was subsequently developed through logistic regression, and the effectiveness of these markers was assessed using receiver operating characteristic (ROC) analysis. Ultimately, the diagnostic capabilities of these potential biomarkers were validated in an independent validation cohort consisting of 30 UA cases and 30 AMI cases. RESULTS In this study, a comprehensive analysis of plasma proteins identified a total of 92 proteins. Further analysis using analysis of variance revealed that 25 proteins exhibited specific expression in the AMI group compared to the HC and UA groups. Additionally, KEGG enrichment analysis indicated that these differentially expressed proteins were primarily associated with the activation of cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, and GnRH signaling pathway. AGRP, TGM2, IL6, GH1, and CA5A were identified through LASSO regression as prospective protein biomarkers for distinguishing between UA and AMI. The diagnostic model comprising these five proteins exhibited exceptional performance in both the discovery and validation datasets, surpassing AUC values of 0.9. CONCLUSION The findings of our study provide additional insights into the involvement of the inflammatory response and AKT cascade response in the development of AMI. Moreover, we have identified potential protein markers that could be utilized for the accurate diagnosis of AMI. These results offer a fresh perspective for clinical decision-making in the context of AMI.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China; Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Hongsheng Lu
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Qi Chen
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Ji-Cheng Li
- Department of Cardiothoracic Surgery and Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China; Institute of Cell Biology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Daskalopoulou A, Giotaki SG, Toli K, Minia A, Pliaka V, Alexopoulos LG, Deftereos G, Iliodromitis K, Dimitroulis D, Siasos G, Verikokos C, Iliopoulos D. Targeted Proteomic Analysis of Patients with Ascending Thoracic Aortic Aneurysm. Biomedicines 2023; 11:biomedicines11051273. [PMID: 37238945 DOI: 10.3390/biomedicines11051273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND There is a need for clinical markers to aid in the detection of individuals at risk of harboring an ascending thoracic aneurysm (ATAA) or developing one in the future. OBJECTIVES To our knowledge, ATAA remains without a specific biomarker. This study aims to identify potential biomarkers for ATAA using targeted proteomic analysis. METHODS In this study, 52 patients were divided into three groups depending on their ascending aorta diameter: 4.0-4.5 cm (N = 23), 4.6-5.0 cm (N = 20), and >5.0 cm (N = 9). A total of 30 controls were in-house populations ethnically matched to cases without known or visible ATAA-related symptoms and with no ATAA familial history. Before the debut of our study, all patients provided medical history and underwent physical examination. Diagnosis was confirmed by echocardiography and angio-computed tomography (CT) scans. Targeted-proteomic analysis was conducted to identify possible biomarkers for the diagnosis of ATAA. RESULTS A Kruskal-Wallis test revealed that C-C motif chemokine ligand 5 (CCL5), defensin beta 1 (HBD1), intracellular adhesion molecule-1 (ICAM1), interleukin-8 (IL8), tumor necrosis factor alpha (TNFα) and transforming growth factor-beta 1 (TGFB1) expressions are significantly increased in ATAA patients in comparison to control subjects with physiological aorta diameter (p < 0.0001). The receiver-operating characteristic analysis showed that the area under the curve values for CCL5 (0.84), HBD1 (0.83) and ICAM1 (0.83) were superior to that of the other analyzed proteins. CONCLUSIONS CCL5, HBD1 and ICAM1 are very promising biomarkers with satisfying sensitivity and specificity that could be helpful in stratifying risk for the development of ATAA. These biomarkers may assist in the diagnosis and follow-up of patients at risk of developing ATAA. This retrospective study is very encouraging; however, further in-depth studies may be worthwhile to investigate the role of these biomarkers in the pathogenesis of ATAA.
Collapse
Affiliation(s)
- Aphrodite Daskalopoulou
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Athens Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Sotiria G Giotaki
- Second Department of Cardiology, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Konstantina Toli
- Cardiology Department, General Hospital of Chalkida, 341 00 Chalkida, Greece
| | - Angeliki Minia
- Protatonce Ltd., Demokritos Science Park, 153 43 Athens, Greece
| | - Vaia Pliaka
- Protatonce Ltd., Demokritos Science Park, 153 43 Athens, Greece
| | - Leonidas G Alexopoulos
- Protatonce Ltd., Demokritos Science Park, 153 43 Athens, Greece
- Department of Mechanical Engineering, National Technical University of Athens, 106 82 Athens, Greece
| | - Gerasimos Deftereos
- Department of Cardiology, G. Gennimatas, General Hospital of Athens, 115 27 Athens, Greece
| | | | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Christos Verikokos
- Second Department of Propedeutic Surgery, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios Iliopoulos
- Laboratory for Experimental Surgery and Surgical Research "N.S. Christeas", Athens Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
12
|
Chen Z, Wu J, Wang W, Tang X, Zhou L, Lv Y, Zheng Y. Investigation of the Pathogenic Mechanism of Ciprofloxacin in Aortic Aneurysm and Dissection by an Integrated Proteomics and Network Pharmacology Strategy. J Clin Med 2023; 12:jcm12041270. [PMID: 36835806 PMCID: PMC9967027 DOI: 10.3390/jcm12041270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Aortic aneurysm and dissection (AAD) is a life-threatening disease worldwide. Recently, fluoroquinolones have been reported to significantly increase the risk of AAD. This study aimed to investigate the potential functional mechanism and molecular targets of fluoroquinolones in relation to AAD by an integrated proteomic and network pharmacology strategy. A total of 1351 differentially expressed proteins were identified in human aortic vascular smooth muscle cells (VSMCs) after ciprofloxacin (CIP) stimulation. The functional analysis emphasized the important roles of metabolism, extracellular matrix homeostasis, mitochondrial damage, focal adhesion, and apoptosis in CIP-stimulated VSMCs. CIP targets were predicted with online databases and verified by molecular docking. Protein-protein interaction (PPI) analysis and module construction of the 34 potential CIP targets and 37 selected hub molecules after CIP stimulation identified four critical target proteins in the module: PARP1, RAC1, IGF1R and MKI67. Functional analysis of the PPI module showed that the MAPK signalling pathway, focal adhesion, apoptosis, regulation of actin cytoskeleton, and PI3K-Akt signalling pathway were significantly enriched. Our results will provide novel insights into the pathogenic mechanism of fluoroquinolones in aortic diseases.
Collapse
Affiliation(s)
- Zhaoran Chen
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Zhou
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Niu X, Zhang S, Shao C, Guo Z, Wu J, Tao J, Zheng K, Ye W, Cai G, Sun W, Li M. Urinary complement proteins in IgA nephropathy progression from a relative quantitative proteomic analysis. PeerJ 2023; 11:e15125. [PMID: 37065697 PMCID: PMC10103701 DOI: 10.7717/peerj.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Aim IgA nephropathy (IgAN) is one of the leading causes of end-stage renal disease (ESRD). Urine testing is a non-invasive way to track the biomarkers used for measuring renal injury. This study aimed to analyse urinary complement proteins during IgAN progression using quantitative proteomics. Methods In the discovery phase, we analysed 22 IgAN patients who were divided into three groups (IgAN 1-3) according to their estimated glomerular filtration rate (eGFR). Eight patients with primary membranous nephropathy (pMN) were used as controls. Isobaric tags for relative and absolute quantitation (iTRAQ) labelling, coupled with liquid chromatography-tandem mass spectrometry, was used to analyse global urinary protein expression. In the validation phase, western blotting and parallel reaction monitoring (PRM) were used to verify the iTRAQ results in an independent cohort (N = 64). Results In the discovery phase, 747 proteins were identified in the urine of IgAN and pMN patients. There were different urine protein profiles in IgAN and pMN patients, and the bioinformatics analysis revealed that the complement and coagulation pathways were most activated. We identified a total of 27 urinary complement proteins related to IgAN. The relative abundance of C3, the membrane attack complex (MAC), the complement regulatory proteins of the alternative pathway (AP), and MBL (mannose-binding lectin) and MASP1 (MBL associated serine protease 2) in the lectin pathway (LP) increased during IgAN progression. This was especially true for MAC, which was found to be involved prominently in disease progression. Alpha-N-acetylglucosaminidase (NAGLU) and α-galactosidase A (GLA) were validated by western blot and the results were consistent with the iTRAQ results. Ten proteins were validated in a PRM analysis, and these results were also consistent with the iTRAQ results. Complement factor B (CFB) and complement component C8 alpha chain (C8A) both increased with the progression of IgAN. The combination of CFB and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) also showed potential as a urinary biomarker for monitoring IgAN development. Conclusion There were abundant complement components in the urine of IgAN patients, indicating that the activation of AP and LP is involved in IgAN progression. Urinary complement proteins may be used as biomarkers for evaluating IgAN progression in the future.
Collapse
Affiliation(s)
- Xia Niu
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shuyu Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Shao
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianling Tao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ke Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenling Ye
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Wei Sun
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mingxi Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Hao X, Cheng S, Jiang B, Xin S. Applying multi-omics techniques to the discovery of biomarkers for acute aortic dissection. Front Cardiovasc Med 2022; 9:961991. [PMID: 36588568 PMCID: PMC9797526 DOI: 10.3389/fcvm.2022.961991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Acute aortic dissection (AAD) is a cardiovascular disease that manifests suddenly and fatally. Due to the lack of specific early symptoms, many patients with AAD are often overlooked or misdiagnosed, which is undoubtedly catastrophic for patients. The particular pathogenic mechanism of AAD is yet unknown, which makes clinical pharmacological therapy extremely difficult. Therefore, it is necessary and crucial to find and employ unique biomarkers for Acute aortic dissection (AAD) as soon as possible in clinical practice and research. This will aid in the early detection of AAD and give clear guidelines for the creation of focused treatment agents. This goal has been made attainable over the past 20 years by the quick advancement of omics technologies and the development of high-throughput tissue specimen biomarker screening. The primary histology data support and add to one another to create a more thorough and three-dimensional picture of the disease. Based on the introduction of the main histology technologies, in this review, we summarize the current situation and most recent developments in the application of multi-omics technologies to AAD biomarker discovery and emphasize the significance of concentrating on integration concepts for integrating multi-omics data. In this context, we seek to offer fresh concepts and recommendations for fundamental investigation, perspective innovation, and therapeutic development in AAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China,*Correspondence: Shijie Xin,
| |
Collapse
|
15
|
Identification of Novel Plasma Biomarkers for Abdominal Aortic Aneurysm by Protein Array Analysis. Biomolecules 2022; 12:biom12121853. [PMID: 36551281 PMCID: PMC9775419 DOI: 10.3390/biom12121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially life-threatening disease that is common in the aging population. Currently, there are no approved diagnostic biomarkers or therapeutic drugs for AAA. We aimed to identify novel plasma biomarkers or potential therapeutic targets for AAA using a high-throughput protein array-based method. Proteomics expression profiles were investigated in plasma from AAA patients and healthy controls (HC) using 440-cytokine protein array analysis. Several promising biomarkers were further validated in independent cohorts using enzyme-linked immunosorbent assay (ELISA). Thirty-nine differentially expressed plasma proteins were identified between AAA and HC. Legumain (LGMN) was significantly higher in AAA patients and was validated in another large cohort. Additionally, "AAA without diabetes" (AAN) patients and "AAA complicated with type 2 diabetes mellitus" (AAM) patients had different cytokine expression patterns in their plasma, and nine plasma proteins were differentially expressed among the AAN, AAM, and HC subjects. Delta-like protein 1 (DLL1), receptor tyrosine-protein kinase erbB-3 (ERBB3), and dipeptidyl peptidase 4 (DPPIV) were significantly higher in AAM than in AAN. This study identified several promising plasma biomarkers of AAA. Their role as therapeutic targets for AAA warrants further investigation.
Collapse
|
16
|
Diaz-Riera E, García-Arguinzonis M, López L, Garcia-Moll X, Badimon L, Padro T. Urinary Proteomic Signature in Acute Decompensated Heart Failure: Advances into Molecular Pathophysiology. Int J Mol Sci 2022; 23:2344. [PMID: 35216460 PMCID: PMC8875709 DOI: 10.3390/ijms23042344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Acute decompensated heart failure (ADHF) is a life-threatening clinical syndrome involving multi-organ function deterioration. ADHF results from multifaceted, dysregulated pathways that remain poorly understood. Better characterization of proteins associated with heart failure decompensation is needed to gain understanding of the disease pathophysiology and support a more accurate disease phenotyping. In this study, we used an untargeted mass spectrometry (MS) proteomic approach to identify the differential urine protein signature in ADHF patients and examine its pathophysiological link to disease evolution. Urine samples were collected at hospital admission and compared with a group of healthy subjects by two-dimensional electrophoresis coupled to MALDI-TOF/TOF mass spectrometry. A differential pattern of 26 proteins (>1.5-fold change, p < 0.005), mostly of hepatic origin, was identified. The top four biological pathways (p < 0.0001; in silico analysis) were associated to the differential ADHF proteome including retinol metabolism and transport, immune response/inflammation, extracellular matrix organization, and platelet degranulation. Transthyretin (TTR) was the protein most widely represented among them. Quantitative analysis by ELISA of TTR and its binding protein, retinol-binding protein 4 (RBP4), validated the proteomic results. ROC analysis evidenced that combining RBP4 and TTR urine levels highly discriminated ADHF patients with renal dysfunction (AUC: 0.826, p < 0.001) and significantly predicted poor disease evolution over 18-month follow-up. In conclusion, the MS proteomic approach enabled identification of a specific urine protein signature in ADHF at hospitalization, highlighting changes in hepatic proteins such as TTR and RBP4.
Collapse
Affiliation(s)
- Elisa Diaz-Riera
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
- Faculty of Medicine, Universtitat de Barcelona, 08036 Barcelona, Spain
| | - Maísa García-Arguinzonis
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
| | - Laura López
- Cardiology Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.L.); (X.G.-M.)
| | - Xavier Garcia-Moll
- Cardiology Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain; (L.L.); (X.G.-M.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain
| | - Teresa Padro
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (E.D.-R.); (M.G.-A.); (L.B.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Stilo F, Catanese V, Nenna A, Montelione N, Codispoti FA, Verghi E, Gabellini T, Jawabra M, Chello M, Spinelli F. Biomarkers in EndoVascular Aneurysm Repair (EVAR) and Abdominal Aortic Aneurysm: Pathophysiology and Clinical Implications. Diagnostics (Basel) 2022; 12:diagnostics12010183. [PMID: 35054350 PMCID: PMC8774611 DOI: 10.3390/diagnostics12010183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating biomarkers have been recently investigated among patients undergoing endovascular aortic aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA). Considering the plethora of small descriptive studies reporting potential associations between biomarkers and clinical outcomes, this review aims to summarize the current literature considering both the treated disease (post EVAR) and the untreated disease (AAA before EVAR). All studies describing outcomes of tissue biomarkers in patients undergoing EVAR and in patients with AAA were included, and references were checked for additional sources. In the EVAR scenario, circulating interleukin-6 (IL-6) is a marker of inflammatory reaction which might predict postoperative morbidity; cystatin C is a promising early marker of post-procedural acute kidney injury; plasma matrix metalloproteinase-9 (MMP-9) concentration after 3 months from EVAR might help in detecting post-procedural endoleak. This review also summarizes the current gaps in knowledge and future direction of this field of research. Among markers used in patients with AAA, galectin and granzyme appear to be promising and should be carefully investigated even in the EVAR setting. Larger prospective trials are required to establish and evaluate prognostic models with highest values with these markers.
Collapse
Affiliation(s)
- Francesco Stilo
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Vincenzo Catanese
- Department of Vascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy;
- Correspondence: or
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Nunzio Montelione
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Alberto Codispoti
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Emanuele Verghi
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Mohamad Jawabra
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Massimo Chello
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| | - Francesco Spinelli
- Department of Cardiovascular Surgery, Campus Bio-Medico University, 00128 Rome, Italy; (A.N.); (N.M.); (F.A.C.); (E.V.); (M.J.); (M.C.); (F.S.)
| |
Collapse
|
18
|
Wang W, Wu J, Liu P, Tang X, Pang H, Xie T, Xu F, Shao J, Chen Y, Liu B, Zheng Y. Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis and Phenotyping of Carotid Artery Stenosis. Front Mol Biosci 2021; 8:714706. [PMID: 34447787 PMCID: PMC8383446 DOI: 10.3389/fmolb.2021.714706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Carotid artery stenosis (CAS) is caused by the formation of atherosclerotic plaques inside the arterial wall and accounts for 20–30% of all strokes. The development of an early, noninvasive diagnostic method and the identification of high-risk patients for ischemic stroke is essential to the management of CAS in clinical practice. Methods: We used the data-independent acquisition (DIA) technique to conduct a urinary proteomic study in patients with CAS and healthy controls. We identified the potential diagnosis and risk stratification biomarkers of CAS. And Ingenuity pathway analysis was used for functional annotation of differentially expressed proteins (DEPs). Furthermore, receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic values of DEPs. Results: A total of 194 DEPs were identified between CAS patients and healthy controls by DIA quantification. The bioinformatics analysis showed that these DEPs were correlated with the pathogenesis of CAS. We further identified 32 DEPs in symptomatic CAS compared to asymptomatic CAS, and biological function analysis revealed that these proteins are mainly related to immune/inflammatory pathways. Finally, a biomarker panel of six proteins (ACP2, PLD3, HLA-C, GGH, CALML3, and IL2RB) exhibited potential diagnostic value in CAS and good discriminative power for differentiating symptomatic and asymptomatic CAS with high sensitivity and specificity. Conclusions: Our study identified novel potential urinary biomarkers for noninvasive early screening and risk stratification of CAS.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyu Pang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Xu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Shao
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Liu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|