1
|
Heptinstall TC, Rosales García RA, Rautsaw RM, Myers EA, Holding ML, Mason AJ, Hofmann EP, Schramer TD, Hogan MP, Borja M, Castañeda-Gaytán G, Feldman CR, Rokyta DR, Parkinson CL. Dietary Breadth Predicts Toxin Expression Complexity in the Venoms of North American Gartersnakes. Integr Org Biol 2025; 7:obaf003. [PMID: 39959576 PMCID: PMC11822205 DOI: 10.1093/iob/obaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Selection on heritable phenotypic variation has played a prominent role in shaping the remarkable adaptations found across the Tree of Life. Complex ecological traits, such as snake venoms, are thought to be the products of selection because they directly link to fitness and survival. Snake venom increases the efficiency of prey capture and processing and is thus likely under intense selection. While many studies of snake venom have investigated the relationship between venom and diet, they have primarily focused on medically relevant front-fanged snakes. However, recent work has suggested that many non-front fanged snakes also rely on venom for subduing prey, despite having reduced toxicity toward humans. Here, we set out to uncover variation in toxin-producing genes, along with the ecological and evolutionary pressures impacting snake venom characteristics in the North American gartersnakes (Squamata: Natricidae: Thamnophis), a model group of non-front-fanged snakes. We annotated and analyzed Duvernoy's venom gland transcriptomes from 16 species representing all the major lineages within Thamnophis. We then generated measures of complexity of both toxins and dietary breadth. We found strong correlations between the complexity of toxin gene expression and phylogenetic diversity of diet, but no relationship between the complexity of the genetic makeup of the transcriptomes (allelic or sequence variation) and diet complexities. We also found phylogenetic signal associated with venom complexity, suggesting some influence of ancestry on venom characteristics. We suggest that, in non-front-fanged snakes, expression of toxins rather than sequence complexity is under strong selection by dietary diversity. These findings contradict similar studies from front-fanged snakes where increased transcriptomic complexity varies positively with dietary diversity, exposing a potential novel relationship between a complex phenotype-toxin expression-and its selective pressures-diet.
Collapse
Affiliation(s)
- T C Heptinstall
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R A Rosales García
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - E A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - M L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - A J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - E P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Science Department, Cape Fear Community College, Wilmington, NC 28401, USA
| | - T D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - M P Hogan
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - M Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - G Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - C R Feldman
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - D R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - C L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Gutiérrez JM, R Casewell N, Laustsen AH. Progress and Challenges in the Field of Snakebite Envenoming Therapeutics. Annu Rev Pharmacol Toxicol 2025; 65:465-485. [PMID: 39088847 DOI: 10.1146/annurev-pharmtox-022024-033544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Snakebite envenoming kills and maims hundreds of thousands of people every year, especially in the rural settings of tropical regions. Envenomings are still treated with animal-derived antivenoms, which have prevented many lives from being lost but which are also medicines in need of innovation. Strides are being made to improve envenoming therapies, with promising efforts made toward optimizing manufacturing and quality aspects of existing antivenoms, accelerating research and development of recombinant antivenoms based on monoclonal antibodies, and repurposing of small-molecule inhibitors that block key toxins. Here, we review the most recent advances in these fields and discuss therapeutic opportunities and limitations for different snakebite treatment modalities. Finally, we discuss challenges related to preclinical and clinical evaluation, regulatory pathways, large-scale manufacture, and distribution and access that need to be addressed to fulfill the goals of the World Health Organization's global strategy to prevent and control snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica;
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom;
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
3
|
Kalogeropoulos K, Rosca V, O'Brien C, Christensen CR, Grahadi R, Sørensen CV, Overath MD, Espi DR, Jenkins DE, Keller UAD, Laustsen AH, Fryer TJ, Jenkins TP. V-ToCs (Venom Toxin Clustering): A tool for the investigation of sequence and structure similarities in snake venom toxins. Toxicon 2024; 250:108088. [PMID: 39222754 DOI: 10.1016/j.toxicon.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Recently, there has been a major push toward the development of next-generation treatments against snakebite envenoming. However, unlike current antivenoms that rely on animal-derived polyclonal antibodies, most of these novel approaches are reliant on an in-depth understanding of the over 2000 known snake venom toxins. Indeed, by identifying similarities (i.e., conserved epitopes) across these different toxins, it is possible to design cross-reactive treatments, such as broadly-neutralising antibodies, that target these similarities. Therefore, in this project, we built an automated pipeline that generates sequence and structural distance matrices and homology trees across all available snake venom toxin sequences and structures. To facilitate analysis, we also developed a user-friendly and high-throughput visualisation tool, coined "Venom TOxin CluStering" (V-ToCs). This tool allows researchers to easily investigate sequence and structure patterns in snake venom toxins for a wide array of purposes, such as elucidating toxin evolution, and will also hopefully help guide the discovery and development of increasingly broadly-neutralising antivenoms in the near future.
Collapse
Affiliation(s)
| | - Vlad Rosca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carol O'Brien
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Rahmat Grahadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia
| | | | - Max D Overath
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Diego Ruiz Espi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas J Fryer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Tassara E, Mikšík I, Pompach P, Mariottini GL, Xiao L, Giovine M, Pozzolini M. Proteomic Analysis and Biochemical Characterization of the Nematocyst Extract of the Hydrozoan Velella velella. Mar Drugs 2024; 22:468. [PMID: 39452876 PMCID: PMC11509761 DOI: 10.3390/md22100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The venom contained within cnidarian nematocysts has a complex composition and holds significant potential for biotechnological applications. In this context, one of the most effective methods for studying nematocyst contents is the proteomic approach, which can detect even trace amounts of compounds while minimizing the need for large-scale animal collection, thus helping to preserve ecosystem integrity. This study aimed to provide a comprehensive proteomic and biochemical characterization of the crude nematocyst extract from the common hydrozoan Velella velella. Despite not being harmful to humans, the analysis of the crude venom extract from V. velella brought to the identification of 783 different proteins, categorized into structural components, enzymes, and potential toxins, revealing a qualitative composition of the venom similar to that of other more toxic cnidarians. Biochemical assays confirmed the presence of various active hydrolytic enzymes within the extract, including proteases, phospholipases, hyaluronidases, DNases, and chitinases. These findings pave the road for future studies involving the pharmacological applications of Velella velella venom components through recombinant production and functional testing.
Collapse
Affiliation(s)
- Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (G.L.M.)
| | - Ivan Mikšík
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
| | - Petr Pompach
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Czech Republic;
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (G.L.M.)
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (G.L.M.)
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (E.T.); (G.L.M.)
| |
Collapse
|
5
|
Avella I, Schulte L, Hurka S, Damm M, Eichberg J, Schiffmann S, Henke M, Timm T, Lochnit G, Hardes K, Vilcinskas A, Lüddecke T. Proteogenomics-guided functional venomics resolves the toxin arsenal and activity of Deinagkistrodon acutus venom. Int J Biol Macromol 2024; 278:135041. [PMID: 39182889 DOI: 10.1016/j.ijbiomac.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.
Collapse
Affiliation(s)
- Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Johanna Eichberg
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Günther Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
6
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
7
|
Palermo G, Schouten WM, Alonso LL, Ulens C, Kool J, Slagboom J. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification. Int J Mol Sci 2023; 24:16769. [PMID: 38069093 PMCID: PMC10706727 DOI: 10.3390/ijms242316769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Snakebite is considered a concerning issue and a neglected tropical disease. Three-finger toxins (3FTxs) in snake venoms primarily cause neurotoxic effects since they have high affinity for nicotinic acetylcholine receptors (nAChRs). Their small molecular size makes 3FTxs weakly immunogenic and therefore not appropriately targeted by current antivenoms. This study aims at presenting and applying an analytical method for investigating the therapeutic potential of the acetylcholine-binding protein (AChBP), an efficient nAChR mimic that can capture 3FTxs, for alternative treatment of elapid snakebites. In this analytical methodology, snake venom toxins were separated and characterised using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and high-throughput venomics. By subsequent nanofractionation analytics, binding profiling of toxins to the AChBP was achieved with a post-column plate reader-based fluorescence-enhancement ligand displacement bioassay. The integrated method was established and applied to profiling venoms of six elapid snakes (Naja mossambica, Ophiophagus hannah, Dendroaspis polylepis, Naja kaouthia, Naja haje and Bungarus multicinctus). The methodology demonstrated that the AChBP is able to effectively bind long-chain 3FTxs with relatively high affinity, but has low or no binding affinity towards short-chain 3FTxs, and as such provides an efficient analytical platform to investigate binding affinity of 3FTxs to the AChBP and mutants thereof and to rapidly identify bound toxins.
Collapse
Affiliation(s)
- Giulia Palermo
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wietse M. Schouten
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Luis Lago Alonso
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Jeroen Kool
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Julien Slagboom
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Oliveira LD, Nachtigall PG, Vialla VL, Campos PF, Costa-Neves AD, Zaher H, Silva NJD, Grazziotin FG, Wilkinson M, Junqueira-de-Azevedo ILM. Comparing morphological and secretory aspects of cephalic glands among the New World coral snakes brings novel insights on their biological roles. Toxicon 2023; 234:107285. [PMID: 37683698 DOI: 10.1016/j.toxicon.2023.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Oral and other cephalic glands have been surveyed by several studies with distinct purposes. Despite the wide diversity and medical relevance of the New World coral snakes, studies focusing on understanding the biological roles of the glands within this group are still scarce. Specifically, the venom glands of some coral snakes were previously investigated but all other cephalic glands remain uncharacterized. In this sense, performing morphological and molecular analysis of these glands may help better understand their biological role. Here, we studied the morphology of the venom, infralabial, rictal, and harderian glands of thirteen species of Micrurus and Micruroides euryxanthus. We also performed a molecular characterization of these glands from selected species of Micrurus using transcriptomic and proteomic approaches. We described substantial morphological variation in the cephalic glands of New World coral snakes and structural evidence for protein-secreting cells in the inferior rictal glands. Our molecular analysis revealed that the venom glands, as expected, are majorly devoted to toxin production, however, the infralabial and inferior rictal glands also expressed some toxin genes at low to medium levels, despite the marked morphological differences. On the other hand, the harderian glands were dominated by the expression of lipocalins, but do not produce toxins. Our integrative analysis, including the prediction of biological processes and pathways, helped decipher some important traits of cephalic glands and better understand their biology.
Collapse
Affiliation(s)
- Leonardo de Oliveira
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil; Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom.
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Vincent Louis Vialla
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Pollyanna F Campos
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | | | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, Brazil
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, 74605-140, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Mark Wilkinson
- Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| |
Collapse
|
9
|
Liao T, Gan M, Qiu Y, Lei Y, Chen Q, Wang X, Yang Y, Chen L, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. miRNAs derived from cobra venom exosomes contribute to the cobra envenomation. J Nanobiotechnology 2023; 21:356. [PMID: 37777744 PMCID: PMC10544165 DOI: 10.1186/s12951-023-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Currently, there is an increasing amount of evidence indicating that exosomes and the miRNAs they contain are crucial players in various biological processes. However, the role of exosomes and miRNAs in snake venom during the envenomation process remains largely unknown. In this study, fresh venom from Naja atra of different ages (2-month-old, 1-year-old, and 5-year-old) was collected, and exosomes were isolated through ultracentrifugation. The study found that exosomes with inactivated proteins and enzymes can still cause symptoms similar to cobra envenomation, indicating that substances other than proteins and enzymes in exosomes may also play an essential role in cobra envenomation. Furthermore, the expression profiles of isolated exosome miRNAs were analyzed. The study showed that a large number of miRNAs were co-expressed and abundant in cobra venom exosomes (CV-exosomes) of different ages, including miR-2904, which had high expression abundance and specific sequences. The specific miR-2094 derived from CV-exosomes (CV-exo-miR-2904) was overexpressed both in vitro and in vivo. As a result, CV-exo-miR-2904 induced symptoms similar to cobra envenomation in mice and caused liver damage, demonstrating that it plays a crucial role in cobra envenomation. These results reveal that CV-exosomes and the miRNAs they contain play a significant regulatory role in cobra envenomation. Our findings provide new insights for the treatment of cobra bites and the development of snake venom-based medicines.
Collapse
Affiliation(s)
- Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
10
|
Srodawa K, Cerda PA, Davis Rabosky AR, Crowe-Riddell JM. Evolution of Three-Finger Toxin Genes in Neotropical Colubrine Snakes (Colubridae). Toxins (Basel) 2023; 15:523. [PMID: 37755949 PMCID: PMC10534312 DOI: 10.3390/toxins15090523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Snake venom research has historically focused on front-fanged species (Viperidae and Elapidae), limiting our knowledge of venom evolution in rear-fanged snakes across their ecologically diverse phylogeny. Three-finger toxins (3FTxs) are a known neurotoxic component in the venoms of some rear-fanged snakes (Colubridae: Colubrinae), but it is unclear how prevalent 3FTxs are both in expression within venom glands and more broadly among colubrine species. Here, we used a transcriptomic approach to characterize the venom expression profiles of four species of colubrine snakes from the Neotropics that were dominated by 3FTx expression (in the genera Chironius, Oxybelis, Rhinobothryum, and Spilotes). By reconstructing the gene trees of 3FTxs, we found evidence of putative novel heterodimers in the sequences of Chironius multiventris and Oxybelis aeneus, revealing an instance of parallel evolution of this structural change in 3FTxs among rear-fanged colubrine snakes. We also found positive selection at sites within structural loops or "fingers" of 3FTxs, indicating these areas may be key binding sites that interact with prey target molecules. Overall, our results highlight the importance of exploring the venoms of understudied species in reconstructing the full evolutionary history of toxins across the tree of life.
Collapse
Affiliation(s)
- Kristy Srodawa
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter A. Cerda
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Alison R. Davis Rabosky
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Jenna M. Crowe-Riddell
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
11
|
Sjakste N, Gajski G. A Review on Genotoxic and Genoprotective Effects of Biologically Active Compounds of Animal Origin. Toxins (Basel) 2023; 15:165. [PMID: 36828477 PMCID: PMC9961038 DOI: 10.3390/toxins15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Envenomation by animal venoms remains a serious medical and social problem, especially in tropical countries. On the other hand, animal venoms are widely used as a source of biologically active compounds for the development of novel drugs. Numerous derivatives of animal venoms are already used in clinical practice. When analysing the mechanisms of action of animal venoms, attention is usually focused on the main target of the venom's enzymes and peptides such as neurotoxic, cytotoxic or haemorrhagic effects. In the present review, we would like to draw attention to the "hidden" effects of animal venoms and their derivatives in regard to DNA damage and/or protection against DNA damage. Alkaloids and terpenoids isolated from sponges such as avarol, ingenamine G or variolin B manifest the capability to bind DNA in vitro and produce DNA breaks. Trabectidin, isolated from a sea squirt, also binds and damages DNA. A similar action is possible for peptides isolated from bee and wasp venoms such as mastoparan, melectin and melittin. However, DNA lesions produced by the crude venoms of jellyfish, scorpions, spiders and snakes arise as a consequence of cell membrane damage and the subsequent oxidative stress, whereas certain animal venoms or their components produce a genoprotective effect. Current research data point to the possibility of using animal venoms and their components in the development of various potential therapeutic agents; however, before their possible clinical use the route of injection, molecular target, mechanism of action, exact dosage, possible side effects and other fundamental parameters should be further investigated.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
- Genetics and Bioinformatics, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Liu C, Yan Q, Yi K, Hu T, Wang J, Zhang Z, Li H, Luo Y, Zhang D, Meng E. A secretory system for extracellular production of spider neurotoxin huwentoxin-I in Escherichia coli. Prep Biochem Biotechnol 2022; 53:914-922. [PMID: 36573266 DOI: 10.1080/10826068.2022.2158473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to their advantages in structural stability and versatility, cysteine-rich peptides, which are secreted from the venom glands of venomous animals, constitute a naturally occurring pharmaceutical arsenal. However, the correct folding of disulfide bonds is a challenging task in the prokaryotic expression system like Escherichia coli due to the reducing environment. Here, a secretory expression plasmid pSE-G1M5-SUMO-HWTX-I for the spider neurotoxin huwentoxin-I (HWTX-I) with three disulfides as a model of cysteine-rich peptides was constructed. By utilizing the signal peptide G1M5, the fusion protein 6 × His-SUMO-HWTX-I was successfully secreted into extracellular medium of BL21(DE3). After enrichment using cation-exchange chromatography and purification utilizing the Ni-NTA column, 6 × His-SUMO-HWTX-I was digested via Ulp1 kinase to release recombinant HWTX-I (rHWTX-I), which was further purified utilizing RP-HPLC. Finally, both impurities with low and high molecular weights were completely removed. The molecular mass of rHWTX-I was identified as being 3750.8 Da, which was identical to natural HWTX-I with three disulfide bridges. Furthermore, by utilizing whole-cell patch clamp, the sodium currents of hNav1.7 could be inhibited by rHWTX-I and the IC50 value was 419 nmol/L.
Collapse
Affiliation(s)
- Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Genetic Improvement and Multiple Utilization of Economic Crops in Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Qing Yan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Ke Yi
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Tianhao Hu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Jianjie Wang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Zheyang Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Huimin Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Yutao Luo
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Dongyi Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Genetic Improvement and Multiple Utilization of Economic Crops in Hunan Province, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-polluted Soils, Hunan University of Science and Technology, Xiangtan, Hunan, PR China
| |
Collapse
|