1
|
Hasanpour Z, Mazaheryazdi M, Haddadzade Niri H, Maarefvand M, Mehdizadeh H. Cochlear Synaptopathy in Full-Term Neonates: A Case-Control Study of NICU Hospitalization Impact. Indian J Otolaryngol Head Neck Surg 2025; 77:1842-1848. [PMID: 40226246 PMCID: PMC11985705 DOI: 10.1007/s12070-025-05428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Aims Cochlear synaptopathy, or hidden hearing loss, involves synaptic loss between inner hair cells and auditory nerve fibers. While linked to aging and excessive noise exposure in adults, its impact on neonates remains unclear. This study compared cochlear synaptopathy in full-term neonates hospitalized in the neonatal intensive care unit (NICU) versus healthy controls. Methods Sixty full-term neonates-30 hospitalized in the neonatal intensive care unit (NICU) and 30 healthy controls-were enrolled. Inclusion criteria comprised gestational age ≥ 37 weeks, chronological age < 1-month, normal auditory brainstem response (ABR) thresholds (≤ 25 dB nHL), transient evoked otoacoustic emissions, and tympanometry. ABR wave I and V amplitudes, wave I/V ratio, growth functions, acoustic reflex thresholds (ART), and adaptation tests (rapid-rate ABR) were analyzed. Results No significant differences emerged between NICU-hospitalized and control neonates in ABR wave I/V amplitudes (wave I: 0.05-0.15 µV vs. 0.06-0.11 µV; wave V: 0.12-0.21 µV vs. 0.14-0.20 µV), I/V ratio (0.57-0.75 vs. 0.54-0.67), ART (80.35-73.14 dB HL vs. 78.44-71.59 dB HL), or adaptation latencies (7.60 ms vs. 7.56 ms). Conclusion The results suggest that NICU hospitalization does not significantly increase the risk of cochlear synaptopathy in full-term neonates, even when evaluating synaptic integrity using ABR wave I/V ratios, a biomarker for hidden hearing loss, despite normal hearing thresholds.
Collapse
Affiliation(s)
- Zeinab Hasanpour
- Present Address: Departeman of Audiology, School of Rehabilitation Sciences, Iran University of Medical Science, Tehran, Iran
| | - Malihah Mazaheryazdi
- Present Address: Departeman of Audiology, School of Rehabilitation Sciences, Iran University of Medical Science, Tehran, Iran
| | - Hassan Haddadzade Niri
- Present Address: Departeman of Audiology, School of Rehabilitation Sciences, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Maarefvand
- Present Address: Department of Audiology, School of Rehabilitation Sciences,Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | |
Collapse
|
2
|
Balan JR, Mishra SK, Rodrigo H. Extended high-frequency hearing and suprathreshold neural synchrony in the auditory brainstem. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:1577-1586. [PMID: 40035573 DOI: 10.1121/10.0036054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Elevated hearing thresholds in the extended high frequencies (EHFs) (>8 kHz) are often associated with poorer speech-in-noise recognition despite a clinically normal audiogram. However, whether EHF hearing loss is associated with disruptions in neural processing within the auditory brainstem remains uncertain. The objective of the present study was to investigate whether elevated EHF thresholds influence neural processing at lower frequencies in individuals with normal audiograms. Auditory brainstem responses (ABRs) were recorded at a suprathreshold level (80 dB normal hearing level) from 45 participants with clinically normal hearing. The recording protocol was optimized to obtain robust wave I of the ABR. Results revealed no significant relationship between the pure tone average for EHFs and any ABR metrics at either rate, while adjusting for the effects of age, sex, and hearing thresholds at standard frequencies (0.25-8 kHz). Rate-dependent significant sex effects for wave I and V amplitude, I-V amplitude ratio, and III and V latency were observed. Elevated EHF hearing thresholds do not significantly affect the brainstem processing in the lower frequencies (<8 kHz).
Collapse
Affiliation(s)
- Jithin Raj Balan
- Department of Speech, Language and Hearing Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Communication Sciences and Disorders, California State University, Sacramento, California 95819, USA
| | - Srikanta K Mishra
- Department of Speech, Language and Hearing Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| |
Collapse
|
3
|
Garrett M, Vasilkov V, Mauermann M, Devolder P, Wilson JL, Gonzales L, Henry KS, Verhulst S. Deciphering Compromised Speech-in-Noise Intelligibility in Older Listeners: The Role of Cochlear Synaptopathy. eNeuro 2025; 12:ENEURO.0182-24.2024. [PMID: 39788732 PMCID: PMC11842038 DOI: 10.1523/eneuro.0182-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available. Furthermore, age-related hearing damage can comprise various aspects (e.g., hair cell damage, CS) that each can play a role in impaired sound perception. To explore the link between cochlear damage and speech intelligibility deficits, this study examines the role of CS for word recognition among older listeners. We first validated an envelope-following response (EFR) marker for CS using a Budgerigar model. We then applied this marker in human experiments, while restricting the speech material's frequency content to ensure that both the EFR and the behavioral tasks engaged similar cochlear frequency regions. Following this approach, we identified the relative contribution of hearing sensitivity and CS to speech intelligibility in two age-matched (65-year-old) groups with clinically normal (n = 15, 8 females) or impaired audiograms (n = 13, 8 females). Compared to a young normal-hearing control group (n = 13, 7 females), the older groups demonstrated lower EFR responses and impaired speech reception thresholds. We conclude that age-related CS reduces supra-threshold temporal envelope coding with subsequent speech coding deficits in noise that cannot be explained based on hearing sensitivity alone.
Collapse
Affiliation(s)
- Markus Garrett
- Medizinische Physik and Cluster of Excellence "Hearing4all", Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Viacheslav Vasilkov
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - Manfred Mauermann
- Medizinische Physik and Cluster of Excellence "Hearing4all", Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Pauline Devolder
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - John L Wilson
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Leslie Gonzales
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| |
Collapse
|
4
|
Benson MA, Peacock J, Sergison MD, Stich D, Tollin DJ. Neural and behavioral binaural hearing impairment and its recovery following moderate noise exposure. Hear Res 2025; 456:109166. [PMID: 39693785 PMCID: PMC11772110 DOI: 10.1016/j.heares.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate. Animal studies to date have focused primarily on peripheral hearing measures to diagnose ribbon synapse loss, while suggesting binaural listening deficits such as speech-reception-in-noise result from this disorder, but haven't accounted for the possible regeneration of synapses. To address this, we measured binaural physiological and behavioral function, the latter utilizing the pre-pulse inhibition of acoustic startle method, in both male and female adult guinea pigs following exposure to noise that has been shown to induce cochlear synaptopathy. Physiological measurements extended to 2 months post noise exposure to characterize any deficit and subsequent recovery. While common audiological assessments showed temporary threshold shift, reduced evoked potential amplitudes indicative of synaptopathy and measurable binaural electrophysiological hearing deficits post exposure, all measures recovered by 2 months. Suspected regeneration of synaptic ribbons occurred by 2 months post exposure and cochlear histology revealed no synaptic loss 4 months post exposure. Our results show that the same noise exposure protocol demonstrated to cause synaptic loss in prior studies causes physiological binaural processing deficits in the brainstem and that the recovery of neural binaural processing coincides with the regeneration of synapses shown in previous studies and normal binaural hearing behavior.
Collapse
MESH Headings
- Animals
- Guinea Pigs
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/psychology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/etiology
- Female
- Male
- Auditory Threshold
- Cochlea/physiopathology
- Cochlea/pathology
- Recovery of Function
- Noise/adverse effects
- Acoustic Stimulation
- Synapses/pathology
- Behavior, Animal
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem
- Time Factors
- Reflex, Startle
- Hearing
- Prepulse Inhibition
- Evoked Potentials, Auditory
Collapse
Affiliation(s)
- Monica A Benson
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Matthew D Sergison
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominik Stich
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel J Tollin
- Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Kamerer AM, Harris SE, Wichman CS, Rasetshwane DM, Neely ST. The relationship and interdependence of auditory thresholds, proposed behavioural measures of hidden hearing loss, and physiological measures of auditory function. Int J Audiol 2025; 64:11-24. [PMID: 39180321 PMCID: PMC11779596 DOI: 10.1080/14992027.2024.2391986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVES Standard diagnostic measures focus on threshold elevation but hearing concerns may occur independently of threshold elevation - referred to as "hidden hearing loss" (HHL). A deeper understanding of HHL requires measurements that locate dysfunction along the auditory pathway. This study aimed to describe the relationship and interdependence between certain behavioural and physiological measures of auditory function that are thought to be indicative of HHL. DESIGN Data were collected on a battery of behavioural and physiological measures of hearing. Threshold-dependent variance was removed from each measure prior to generating a multiple regression model of the behavioural measures using the physiological measures. STUDY SAMPLE 224 adults in the United States with audiometric thresholds ≤65 dB HL. RESULTS Thresholds accounted for between 21 and 60% of the variance in our behavioural measures and 5-51% in our physiological measures of hearing. There was no evidence that the behavioural measures of hearing could be predicted by the selected physiological measures. CONCLUSIONS Several proposed behavioural measures for HHL: thresholds-in-noise, frequency-modulation detection, and speech recognition in difficult listening conditions, are influenced by hearing sensitivity and are not predicted by outer hair cell or auditory nerve physiology. Therefore, these measures may not be able to assess threshold-independent hearing disorders.
Collapse
|
6
|
Dapper K, Wolpert SM, Schirmer J, Fink S, Gaudrain E, Başkent D, Singer W, Verhulst S, Braun C, Dalhoff E, Rüttiger L, Munk MHJ, Knipper M. Age dependent deficits in speech recognition in quiet and noise are reflected in MGB activity and cochlear onset coding. Neuroimage 2025; 305:120958. [PMID: 39622462 DOI: 10.1016/j.neuroimage.2024.120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
The slowing and reduction of auditory responses in the brain are recognized side effects of increased pure tone thresholds, impaired speech recognition, and aging. However, it remains controversial whether central slowing is primarily linked to brain processes as atrophy, or is also associated with the slowing of temporal neural processing from the periphery. Here we analyzed electroencephalogram (EEG) responses that most likely reflect medial geniculate body (MGB) responses to passive listening of phonemes in 80 subjects ranging in age from 18 to 76 years, in whom the peripheral auditory responses had been analyzed in detail (Schirmer et al., 2024). We observed that passive listening to vowels and phonemes, specifically designed to rely on either temporal fine structure (TFS) for frequencies below the phase locking limit (<1500 Hz), or on the temporal envelope (TENV) for frequencies above phase locking limit, entrained lower or higher neural EEG responses. While previous views predict speech content, particular in noise to be encoded through TENV, here a decreasing phoneme-induced EEG amplitude over age in response to phonemes relying on TENV coding could also be linked to poorer speech-recognition thresholds in quiet. In addition, increased phoneme-evoked EEG delay could be correlated with elevated extended high-frequency threshold (EHF) for phoneme changes that relied on TFS and TENV coding. This may suggest a role of pure-tone threshold averages (PTA) of EHF for TENV and TFS beyond sound localization that is reflected in likely MGB delays. When speech recognition thresholds were normalized for pure-tone thresholds, however, the EEG amplitudes remained insignificant, and thereby became independent of age. Under these conditions, poor speech recognition in quiet was found together with a delay in EEG response for phonemes that relied on TFS coding, while poor speech recognition in ipsilateral noise was observed as a trend of shortened EEG delays for phonemes that relied on TENV coding. Based on previous analyses performed in these same subjects, elevated thresholds in extended high-frequency regions were linked to cochlear synaptopathy and auditory brainstem delays. Also, independent of hearing loss, poor speech-performing groups in quiet or with ipsilateral noise during TFS or TENV coding could be linked to lower or better outer hair cell performance and delayed or steeper auditory nerve responses at stimulus onset. The amplitude and latency of MGB responses to phonemes requiring TFS or TENV coding, dependent or independent of hearing loss, may thus be a new predictor of poor speech recognition in quiet and ipsilateral noise that links deficits in synchronicity at stimulus onset to neocortical activity. Amplitudes and delays of speech EEG responses to syllables should be reconsidered for future hearing-aid studies.
Collapse
Affiliation(s)
- Konrad Dapper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Stephan M Wolpert
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Jakob Schirmer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Center Hospitalier Le Vinatier -Bâtiment 462-Neurocampus, 95 boulevard Pinel, Lyon, France
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, Groningen 9700RB, the Netherlands
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - Christoph Braun
- MEG-Center, University of Tübingen, Tübingen 72076, Germany; HIH, Hertie Institute for Clinical Brain Research, Tübingen 72076, Germany; CIMeC, Center for Mind and Brain Research, University of Trento, Rovereto 38068, Italy
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany
| | - Matthias H J Munk
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany; Department of Biology, Technical University 64287 Darmstadt, Darmstadt, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
7
|
Couth S, Prendergast G, Guest H, Munro KJ, Moore DR, Plack CJ, Ginsborg J, Dawes P. A longitudinal study investigating the effects of noise exposure on behavioural, electrophysiological and self-report measures of hearing in musicians with normal audiometric thresholds. Hear Res 2024; 451:109077. [PMID: 39084132 DOI: 10.1016/j.heares.2024.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Musicians are at risk of hearing loss and tinnitus due to regular exposure to high levels of noise. This level of risk may have been underestimated previously since damage to the auditory system, such as cochlear synaptopathy, may not be easily detectable using standard clinical measures. Most previous research investigating hearing loss in musicians has involved cross-sectional study designs that may capture only a snapshot of hearing health in relation to noise exposure. The aim of this study was to investigate the effects of cumulative noise exposure on behavioural, electrophysiological, and self-report indices of hearing damage in early-career musicians and non-musicians with normal hearing over a 2-year period. Participants completed an annual test battery consisting of pure tone audiometry, extended high-frequency hearing thresholds, distortion product otoacoustic emissions (DPOAEs), speech perception in noise, auditory brainstem responses, and self-report measures of tinnitus, hyperacusis, and hearing in background noise. Participants also completed the Noise Exposure Structured Interview to estimate cumulative noise exposure across the study period. Linear mixed models assessed changes over time. The longitudinal analysis comprised 64 early-career musicians (female n = 34; age range at T0 = 18-26 years) and 30 non-musicians (female n = 20; age range at T0 = 18-27 years). There were few longitudinal changes as a result of musicianship. Small improvements over time in some measures may be attributable to a practice/test-retest effect. Some measures (e.g., DPOAE indices of outer hair cell function) were associated with noise exposure at each time point, but did not show a significant change over time. A small proportion of participants reported a worsening of their tinnitus symptoms, which participants attributed to noise exposure, or not using hearing protection. Future longitudinal studies should attempt to capture the effects of noise exposure over a longer period, taken at several time points, for a precise measure of how hearing changes over time. Hearing conservation programmes for "at risk" individuals should closely monitor DPOAEs to detect early signs of noise-induced hearing loss when audiometric thresholds are clinically normal.
Collapse
Affiliation(s)
- Samuel Couth
- Manchester Centre for Audiology and Deafness, University of Manchester, UK.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, UK
| | - David R Moore
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Communication Sciences Research Center, Cincinnati Children's Hospital Medical Centre, OH, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| | | | - Piers Dawes
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Centre for Hearing Research, School of Health and Rehabilitation Sciences, University of Queensland, Australia
| |
Collapse
|
8
|
Iliadou E, Bitzios V, Pastiadis K, Plack CJ, Bibas A. Exposure to Noise or Music in Clinical Trials: A Scoping Review on Ethical and Methodological Considerations. Noise Health 2024; 26:243-251. [PMID: 39345060 PMCID: PMC11539987 DOI: 10.4103/nah.nah_41_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Use of noise or music in experimental human studies requires balancing the need to avoid subjecting participants to potentially harmful noise levels while still reaching levels that will produce a measurable change in the primary outcome. Several methodological and ethical aspects must be considered. This study aims to summarize ethical and methodological aspects, and reported outcomes, of previously published experimental paradigms using loud noise/music. METHODS AND MATERIALS Four databases (Medline, Central, Web of Science, and Scopus) and two trials registries (Clinicaltrials.gov and EU Clinical Trials) were searched. Extracted items had the details of author and year of publication, study design and purpose, population, setting timeline and material, selected battery test, and effect of noise/music on participants' hearing. RESULTS Thirty-four studies were included. Exposure safety considerations were reported in five studies. Eleven studies assessing hearing loss used white or narrow-band noise [(NBN (0.5-4 kHz), up to 115 dBA, duration range: 3'-24 hours)], and 10 used pop music (up to 106 dBA, duration range: 10'-4 hours). Experimental setting varied significantly. Temporary thresholds shift (TTS) and reduction in distortion product otoacoustic emissions were found at 1-8 kHz, with maximum average TTS∼21.5 dB at 4 kHz after NBN and ∼11.5 dB at 6 kHz after music exposure. All participants recovered their hearing, except for one participant in one study. In the 13 non-hearing loss studies, no hearing testing was performed after exposure, but loud noise was associated with temporary stress, bradygastria, and cardiovascular changes. Noise-induced subjective stress may be higher for participants with tinnitus. Loud noise (100 dBA, 10') increased diastolic and mean blood pressure only in participants with hypertension. CONCLUSION Experimental exposure paradigms can produce temporary changes to hearing without measurable long-term health consequences. Methodological and ethical aspects identified in this review should be considered for the development of future paradigms.
Collapse
Affiliation(s)
- Eleftheria Iliadou
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Royal National ENT and Dental Eastman Hospital UCLH, London, UK
| | - Vasileios Bitzios
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
- Department of Psychology, Lancaster University, Lancaster, UK
| | - Athanasios Bibas
- First Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of age and noise exposure history on auditory nerve response amplitudes: A systematic review, study, and meta-analysis. Hear Res 2024; 447:109010. [PMID: 38744019 PMCID: PMC11135078 DOI: 10.1016/j.heares.2024.109010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States.
| | - Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - April P Alvey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Abigail Lawson
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Lois J Matthews
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Judy R Dubno
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| | - Kelly C Harris
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, SC 29425-5500, United States
| |
Collapse
|
10
|
McFarlane KA, Sanchez JT. Effects of Temporal Processing on Speech-in-Noise Perception in Middle-Aged Adults. BIOLOGY 2024; 13:371. [PMID: 38927251 PMCID: PMC11200514 DOI: 10.3390/biology13060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Auditory temporal processing is a vital component of auditory stream segregation, or the process in which complex sounds are separated and organized into perceptually meaningful objects. Temporal processing can degrade prior to hearing loss, and is suggested to be a contributing factor to difficulties with speech-in-noise perception in normal-hearing listeners. The current study tested this hypothesis in middle-aged adults-an under-investigated cohort, despite being the age group where speech-in-noise difficulties are first reported. In 76 participants, three mechanisms of temporal processing were measured: peripheral auditory nerve function using electrocochleography, subcortical encoding of periodic speech cues (i.e., fundamental frequency; F0) using the frequency following response, and binaural sensitivity to temporal fine structure (TFS) using a dichotic frequency modulation detection task. Two measures of speech-in-noise perception were administered to explore how contributions of temporal processing may be mediated by different sensory demands present in the speech perception task. This study supported the hypothesis that temporal coding deficits contribute to speech-in-noise difficulties in middle-aged listeners. Poorer speech-in-noise perception was associated with weaker subcortical F0 encoding and binaural TFS sensitivity, but in different contexts, highlighting that diverse aspects of temporal processing are differentially utilized based on speech-in-noise task characteristics.
Collapse
Affiliation(s)
- Kailyn A. McFarlane
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA;
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA;
- Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Schirmer J, Wolpert S, Dapper K, Rühle M, Wertz J, Wouters M, Eldh T, Bader K, Singer W, Gaudrain E, Başkent D, Verhulst S, Braun C, Rüttiger L, Munk MHJ, Dalhoff E, Knipper M. Neural Adaptation at Stimulus Onset and Speed of Neural Processing as Critical Contributors to Speech Comprehension Independent of Hearing Threshold or Age. J Clin Med 2024; 13:2725. [PMID: 38731254 PMCID: PMC11084258 DOI: 10.3390/jcm13092725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Background: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. Methods: We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. Results: A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking. When testing for differences in OLSA thresholds normalized for PT thresholds (PTTs), marked differences in speech comprehension ability exist not only in noise, but also in quiet, and they exist throughout the whole age range investigated. Listeners with poor speech comprehension in quiet exhibited a relatively lower pDPOAE and, thus, cochlear amplifier performance independent of PTT, smaller and delayed ABRs, and lower performance in vowel-phoneme discrimination below phase-locking limits (/o/-/u/). When OLSA was tested in noise, listeners with poor speech comprehension independent of PTT had larger pDPOAEs and, thus, cochlear amplifier performance, larger ASSR amplitudes, and higher uncomfortable loudness levels, all linked with lower performance of vowel-phoneme discrimination above the phase-locking limit (/i/-/y/). Conslusions: This study indicates that listening in noise in humans has a sizable disadvantage in envelope coding when basilar-membrane compression is compromised. Clearly, and in contrast to previous assumptions, both good and poor speech comprehension can exist independently of differences in PTTs and age, a phenomenon that urgently requires improved techniques to diagnose sound processing at stimulus onset in the clinical routine.
Collapse
Affiliation(s)
- Jakob Schirmer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Moritz Rühle
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marjoleen Wouters
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Therese Eldh
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR5292, Inserm U1028, Université Lyon 1, Centre Hospitalier Le Vinatier-Bâtiment 462–Neurocampus, 95 Boulevard Pinel, 69675 Bron CEDEX, France;
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Christoph Braun
- Magnetoencephalography-Centre and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany;
- Center for Mind and Brain Research, University of Trento, Palazzo Fedrigotti-corso Bettini 31, 38068 Rovereto, Italy
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Matthias H. J. Munk
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
- Department of Psychiatry & Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| |
Collapse
|
12
|
Dias JW, McClaskey CM, Alvey AP, Lawson A, Matthews LJ, Dubno JR, Harris KC. Effects of Age and Noise Exposure History on Auditory Nerve Response Amplitudes: A Systematic Review, Study, and Meta-Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585882. [PMID: 38585917 PMCID: PMC10996537 DOI: 10.1101/2024.03.20.585882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r=-0.407), but noise-exposure effects are weak (r=-0.152). We conclude that noise-exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Collapse
Affiliation(s)
- James W Dias
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Carolyn M McClaskey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - April P Alvey
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Abigail Lawson
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Lois J Matthews
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Judy R Dubno
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| | - Kelly C Harris
- Medical University of South Carolina Department of Otolaryngology - Head and Neck Surgery
| |
Collapse
|
13
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
14
|
Jo H, Baek EM. The sound of safety: exploring the determinants of prevention intention in noisy industrial workplaces. BMC Public Health 2024; 24:90. [PMID: 38178066 PMCID: PMC10768458 DOI: 10.1186/s12889-023-17618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Occupational noise exposure is a pervasive issue in many industries, leading to a range of health issues and sleep disturbances among workers. Additionally, there is a strong desire among these workers to prevent industrial accidents. This study, aimed at enhancing worker health and well-being, utilized a survey distributed by the Korean Confederation of Trade Unions to field workers. Data from 1285 workers were collected and analyzed using partial least squares structural equation modeling (PLS-SEM) to identify and understand the factors affecting prevention intention in noisy work environments. Our findings indicate that health problems resulting from occupational noise exposure significantly influence insomnia, perceived severity of potential accidents, perceived benefits of preventive measures, and perceived barriers. Perceived severity was significantly correlated with prevention intention, emphasizing the role of risk perception in motivating preventive behaviors. Perceived benefits were also significantly associated with prevention intention, highlighting the importance of positive outcomes in influencing workers' behaviors. Additionally, perceived barriers showed a significant relationship with prevention intention, suggesting that overcoming these barriers is crucial in promoting preventive behaviors. Demographic factors such as gender displayed a significant association with prevention intention, while age did not. This study provides valuable insights into the multifaceted factors influencing workers' intention to prevent industrial accidents in noisy environments, underlining the importance of comprehensive data collection tools in understanding these dynamics.
Collapse
Affiliation(s)
- Hyeon Jo
- Headquarters, HJ Institute of Technology and Management, 71 Jungdong-ro 39, 14721, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Eun-Mi Baek
- Department of Preventive Medicine, College of Medicine, Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| |
Collapse
|
15
|
McFarlane KA, Sanchez JT. Exploring Electrode Placements to Optimize the Identification and Measurement of Early Auditory Evoked Potentials. Audiol Res 2023; 13:978-988. [PMID: 38131810 PMCID: PMC10740558 DOI: 10.3390/audiolres13060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Cochlear synaptic loss (termed cochlear synaptopathy) has been suggested to contribute to suprathreshold hearing difficulties. However, its existence and putative effects in humans remain inconclusive, largely due to the heterogeneous methods used across studies to indirectly evaluate the health of cochlear synapses. There is a need to standardize proxies of cochlear synaptopathy to appropriately compare and interpret findings across studies. Early auditory evoked potentials (AEPs), including the compound action potential (AP)/Wave I of the auditory brainstem response are a popular proxy, yet remain variable based on technical considerations. This study evaluated one such consideration-electrode array (i.e., montage)-to optimize the use of early AEP waveforms. In 35 young adults, electrocochleography (ECochG) responses were collected using vertical and horizontal montages. Standard ECochG measures and AP/Wave I and Wave II peak-to-trough amplitudes and latencies were compared between montages. Vertical montage recordings consistently produced significantly larger AP/Wave I peak-to-trough amplitudes compared to horizontal recordings. These findings support the use of a vertical electrode montage for optimal recordings of peripheral cochlear nerve activity. As cochlear synaptopathy continues to be explored in humans, the methods highlighted here should be considered in the development of a standardized assessment.
Collapse
Affiliation(s)
- Kailyn A. McFarlane
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA;
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA;
- Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. Noise Exposure in Palestinian Workers Without a Diagnosis of Hearing Impairment: Relations to Speech-Perception-in-Noise Difficulties, Tinnitus, and Hyperacusis. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1085-1109. [PMID: 36802819 DOI: 10.1044/2022_jslhr-22-00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
PURPOSE Many workers in developing countries are exposed to unsafe occupational noise due to inadequate health and safety practices. We tested the hypotheses that occupational noise exposure and aging affect speech-perception-in-noise (SPiN) thresholds, self-reported hearing ability, tinnitus presence, and hyperacusis severity among Palestinian workers. METHOD Palestinian workers (N = 251, aged 18-70 years) without diagnosed hearing or memory impairments completed online instruments including a noise exposure questionnaire; forward and backward digit span tests; hyperacusis questionnaire; the short-form Speech, Spatial and Qualities of Hearing Scale (SSQ12); the Tinnitus Handicap Inventory; and a digits-in-noise (DIN) test. Hypotheses were tested via multiple linear and logistic regression models, including age and occupational noise exposure as predictors, and with sex, recreational noise exposure, cognitive ability, and academic attainment as covariates. Familywise error rate was controlled across all 16 comparisons using the Bonferroni-Holm method. Exploratory analyses evaluated effects on tinnitus handicap. A comprehensive study protocol was preregistered. RESULTS Nonsignificant trends of poorer SPiN performance, poorer self-reported hearing ability, greater prevalence of tinnitus, greater tinnitus handicap, and greater severity of hyperacusis as a function of higher occupational noise exposure were observed. Greater hyperacusis severity was significantly predicted by higher occupational noise exposure. Aging was significantly associated with higher DIN thresholds and lower SSQ12 scores, but not with tinnitus presence, tinnitus handicap, or hyperacusis severity. CONCLUSIONS Workers in Palestine may suffer from auditory effects of occupational noise and aging despite no formal diagnosis. These findings highlight the importance of occupational noise monitoring and hearing-related health and safety practices in developing countries. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22056701.
Collapse
Affiliation(s)
- Adnan M Shehabi
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, The University of Manchester, United Kingdom
- Department of Psychology, Lancaster University, United Kingdom
| |
Collapse
|
17
|
Auditory Electrophysiological and Perceptual Measures in Student Musicians with High Sound Exposure. Diagnostics (Basel) 2023; 13:diagnostics13050934. [PMID: 36900080 PMCID: PMC10000734 DOI: 10.3390/diagnostics13050934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to determine (a) the influence of noise exposure background (NEB) on the peripheral and central auditory system functioning and (b) the influence of NEB on speech recognition in noise abilities in student musicians. Twenty non-musician students with self-reported low NEB and 18 student musicians with self-reported high NEB completed a battery of tests that consisted of physiological measures, including auditory brainstem responses (ABRs) at three different stimulus rates (11.3 Hz, 51.3 Hz, and 81.3 Hz), and P300, and behavioral measures including conventional and extended high-frequency audiometry, consonant-vowel nucleus-consonant (CNC) word test and AzBio sentence test for assessing speech perception in noise abilities at -9, -6, -3, 0, and +3 dB signal to noise ratios (SNRs). The NEB was negatively associated with performance on the CNC test at all five SNRs. A negative association was found between NEB and performance on the AzBio test at 0 dB SNR. No effect of NEB was found on the amplitude and latency of P300 and the ABR wave I amplitude. More investigations of larger datasets with different NEB and longitudinal measurements are needed to investigate the influence of NEB on word recognition in noise and to understand the specific cognitive processes contributing to the impact of NEB on word recognition in noise.
Collapse
|
18
|
Le Prell CG, Clavier OH, Bao J. Noise-induced hearing disorders: Clinical and investigational tools. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:711. [PMID: 36732240 PMCID: PMC9889121 DOI: 10.1121/10.0017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A series of articles discussing advanced diagnostics that can be used to assess noise injury and associated noise-induced hearing disorders (NIHD) was developed under the umbrella of the United States Department of Defense Hearing Center of Excellence Pharmaceutical Interventions for Hearing Loss working group. The overarching goals of the current series were to provide insight into (1) well-established and more recently developed metrics that are sensitive for detection of cochlear pathology or diagnosis of NIHD, and (2) the tools that are available for characterizing individual noise hazard as personal exposure will vary based on distance to the sound source and placement of hearing protection devices. In addition to discussing the utility of advanced diagnostics in patient care settings, the current articles discuss the selection of outcomes and end points that can be considered for use in clinical trials investigating hearing loss prevention and hearing rehabilitation.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | - Jianxin Bao
- Gateway Biotechnology Inc., St. Louis, Missouri 63132, USA
| |
Collapse
|
19
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. Binaural temporal coding and the middle ear muscle reflex in audiometrically normal young adults. Hear Res 2023; 427:108663. [PMID: 36502543 DOI: 10.1016/j.heares.2022.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Noise exposure may damage the synapses that connect inner hair cells with auditory nerve fibers, before outer hair cells are lost. In humans, this cochlear synaptopathy (CS) is thought to decrease the fidelity of peripheral auditory temporal coding. In the current study, the primary hypothesis was that higher middle ear muscle reflex (MEMR) thresholds, as a proxy measure of CS, would be associated with smaller values of the binaural intelligibility level difference (BILD). The BILD, which is a measure of binaural temporal coding, is defined here as the difference in thresholds between the diotic and the antiphasic versions of the digits in noise (DIN) test. This DIN BILD may control for factors unrelated to binaural temporal coding such as linguistic, central auditory, and cognitive factors. Fifty-six audiometrically normal adults (34 females) aged 18 - 30 were tested. The test battery included standard pure tone audiometry, tympanometry, MEMR using a 2 kHz elicitor and 226 Hz and 1 kHz probes, the Noise Exposure Structured Interview, forward digit span test, extended high frequency (EHF) audiometry, and diotic and antiphasic DIN tests. The study protocol was pre-registered prior to data collection. MEMR thresholds did not predict the DIN BILD. Secondary analyses showed no association between MEMR thresholds and the individual diotic and antiphasic DIN thresholds. Greater lifetime noise exposure was non-significantly associated with higher MEMR thresholds, larger DIN BILD values, and lower (better) antiphasic DIN thresholds, but not with diotic DIN thresholds, nor with EHF thresholds. EHF thresholds were associated with neither MEMR thresholds nor any of the DIN outcomes, including the DIN BILD. Results provide no evidence that young, audiometrically normal people incur CS with impacts on binaural temporal processing.
Collapse
Affiliation(s)
- Adnan M Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Audiology and Speech Therapy, Birzeit University, Palestine.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| |
Collapse
|
20
|
de Boer J, Hardy A, Krumbholz K. Could Tailored Chirp Stimuli Benefit Measurement of the Supra-threshold Auditory Brainstem Wave-I Response? J Assoc Res Otolaryngol 2022; 23:787-802. [PMID: 35984541 PMCID: PMC9789297 DOI: 10.1007/s10162-022-00848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2023] Open
Abstract
Auditory brainstem responses (ABRs) to broadband clicks are strongly affected by dyssynchrony, or "latency dispersion", of their frequency-specific cochlear contributions. Optimized chirp stimuli, designed to compensate for cochlear dispersion, can afford substantial increase in broadband ABR amplitudes, particularly for the prominent wave-V deflection. Reports on the smaller wave I, however, which may be useful for measuring cochlear synaptopathy, have been mixed. This study aimed to test previous claims that ABR latency dispersion differs between waves I and V, and between males and females, and thus that using wave- and/or sex-tailored chirps may provide more reliable wave-I benefit. Using the derived-band technique, we measured responses from frequency-restricted (one-octave-wide) cochlear regions to energy-matched click and chirp stimuli. The derived-band responses' latencies were used to assess any wave- and/or sex-related dispersion differences across bands, and their amplitudes, to evaluate any within-band dispersion differences. Our results suggest that sex-related dispersion difference within the lowest-frequency cochlear regions (< 1 kHz), where dispersion is generally greatest, may be a predominant driver of the often-reported sex difference in broadband ABR amplitude. At the same time, they showed no systematic dispersion difference between waves I and V. Instead, they suggest that reduced chirp benefit on wave I may arise as a result of chirp-induced desynchronization of on- and off-frequency responses generated at the same cochlear places, and resultant reduction in response contributions from higher-frequency cochlear regions, to which wave I is thought to be particularly sensitive.
Collapse
Affiliation(s)
- Jessica de Boer
- Hearing Sciences, School of Medicine, Mental Health & Clinical Neurosciences, University of Nottingham, Science Road, Nottingham, NG7 2RD UK
- Nottingham Biomedical Research Centre, Queens Medical Centre, Hearing Theme, Nottingham, NG7 2UH UK
| | - Alexander Hardy
- Hearing Sciences, School of Medicine, Mental Health & Clinical Neurosciences, University of Nottingham, Science Road, Nottingham, NG7 2RD UK
- School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Katrin Krumbholz
- Hearing Sciences, School of Medicine, Mental Health & Clinical Neurosciences, University of Nottingham, Science Road, Nottingham, NG7 2RD UK
- Nottingham Biomedical Research Centre, Queens Medical Centre, Hearing Theme, Nottingham, NG7 2UH UK
| |
Collapse
|
21
|
Grinn SK, Le Prell CG. Evaluation of hidden hearing loss in normal-hearing firearm users. Front Neurosci 2022; 16:1005148. [PMID: 36389238 PMCID: PMC9644938 DOI: 10.3389/fnins.2022.1005148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 04/05/2024] Open
Abstract
Some noise exposures resulting in temporary threshold shift (TTS) result in cochlear synaptopathy. The purpose of this retrospective study was to evaluate a human population that might be at risk for noise-induced cochlear synaptopathy (i.e., "hidden hearing loss"). Participants were firearm users who were (1) at-risk for prior audiometric noise-induced threshold shifts, given their history of firearm use, (2) likely to have experienced complete threshold recovery if any prior TTS had occurred, based on this study's normal-hearing inclusion criteria, and (3) not at-risk for significant age-related synaptopathic loss, based on this study's young-adult inclusion criteria. 70 participants (age 18-25 yr) were enrolled, including 33 firearm users experimental (EXP), and 37 non-firearm users control (CNTRL). All participants were required to exhibit audiometric thresholds ≤20 dB HL bilaterally, from 0.25 to 8 kHz. The study was designed to test the hypothesis that EXP participants would exhibit a reduced cochlear nerve response compared to CNTRL participants, despite normal-hearing sensitivity in both groups. No statistically significant group differences in auditory performance were detected between the CNTRL and EXP participants on standard audiom to etry, extended high-frequency audiometry, Words-in-Noise performance, distortion product otoacoustic emission, middle ear muscle reflex, or auditory brainstem response. Importantly, 91% of EXP participants reported that they wore hearing protection either "all the time" or "almost all the time" while using firearms. The data suggest that consistent use of hearing protection during firearm use can effectively protect cochlear and neural measures of auditory function, including suprathreshold responses. The current results do not exclude the possibility that neural pathology may be evident in firearm users with less consistent hearing protection use. However, firearm users with less consistent hearing protection use are also more likely to exhibit threshold elevation, among other cochlear deficits, thereby confounding the isolation of any potentially selective neural deficits. Taken together, it seems most likely that firearm users who consistently and correctly use hearing protection will exhibit preserved measures of cochlear and neural function, while firearm users who inconsistently and incorrectly use hearing protection are most likely to exhibit cochlear injury, rather than evidence of selective neural injury in the absence of cochlear injury.
Collapse
Affiliation(s)
- Sarah K. Grinn
- Department of Communication Sciences and Disorders, Central Michigan University, Mount Pleasant, MI, United States
| | - Colleen G. Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
22
|
Jahn KN. Clinical and investigational tools for monitoring noise-induced hyperacusis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:553. [PMID: 35931527 PMCID: PMC9448410 DOI: 10.1121/10.0012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hyperacusis is a recognized perceptual consequence of acoustic overexposure that can lead to debilitating psychosocial effects. Despite the profound impact of hyperacusis on quality of life, clinicians and researchers lack objective biomarkers and standardized protocols for its assessment. Outcomes of conventional audiologic tests are highly variable in the hyperacusis population and do not adequately capture the multifaceted nature of the condition on an individual level. This presents challenges for the differential diagnosis of hyperacusis, its clinical surveillance, and evaluation of new treatment options. Multiple behavioral and objective assays are emerging as contenders for inclusion in hyperacusis assessment protocols but most still await rigorous validation. There remains a pressing need to develop tools to quantify common nonauditory symptoms, including annoyance, fear, and pain. This review describes the current literature on clinical and investigational tools that have been used to diagnose and monitor hyperacusis, as well as those that hold promise for inclusion in future trials.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
23
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
24
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
25
|
Shehabi AM, Prendergast G, Guest H, Plack CJ. The Effect of Lifetime Noise Exposure and Aging on Speech-Perception-in-Noise Ability and Self-Reported Hearing Symptoms: An Online Study. Front Aging Neurosci 2022; 14:890010. [PMID: 35711902 PMCID: PMC9195834 DOI: 10.3389/fnagi.2022.890010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Animal research shows that aging and excessive noise exposure damage cochlear outer hair cells, inner hair cells, and the synapses connecting inner hair cells with the auditory nerve. This may translate into auditory symptoms such as difficulty understanding speech in noise, tinnitus, and hyperacusis. The current study, using a novel online approach, assessed and quantified the effects of lifetime noise exposure and aging on (i) speech-perception-in-noise (SPiN) thresholds, (ii) self-reported hearing ability, and (iii) the presence of tinnitus. Secondary aims involved documenting the effects of lifetime noise exposure and aging on tinnitus handicap and the severity of hyperacusis. Two hundred and ninety-four adults with no past diagnosis of hearing or memory impairments were recruited online. Participants were assigned into two groups: 217 "young" (age range: 18-35 years, females: 151) and 77 "older" (age range: 50-70 years, females: 50). Participants completed a set of online instruments including an otologic health and demographic questionnaire, a dementia screening tool, forward and backward digit span tests, a noise exposure questionnaire, the Khalfa hyperacusis questionnaire, the short-form of the Speech, Spatial, and Qualities of Hearing scale, the Tinnitus Handicap Inventory, a digits-in-noise test, and a Coordinate Response Measure speech-perception test. Analyses controlled for sex and cognitive function as reflected by the digit span. A detailed protocol was pre-registered, to guard against "p-hacking" of this extensive dataset. Lifetime noise exposure did not predict SPiN thresholds, self-reported hearing ability, or the presence of tinnitus in either age group. Exploratory analyses showed that worse hyperacusis scores, and a greater prevalence of tinnitus, were associated significantly with high lifetime noise exposure in the young, but not in the older group. Age was a significant predictor of SPiN thresholds and the presence of tinnitus, but not of self-reported hearing ability, tinnitus handicap, or severity of hyperacusis. Consistent with several lab studies, our online-derived data suggest that older adults with no diagnosis of hearing impairment have a poorer SPiN ability and a higher risk of tinnitus than their younger counterparts. Moreover, lifetime noise exposure may increase the risk of tinnitus and the severity of hyperacusis in young adults with no diagnosis of hearing impairment.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
26
|
Kamerer AM, Harris SE, Kopun JG, Neely ST, Rasetshwane DM. Understanding Self-reported Hearing Disability in Adults With Normal Hearing. Ear Hear 2022; 43:773-784. [PMID: 34759207 PMCID: PMC9010339 DOI: 10.1097/aud.0000000000001161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Despite a diagnosis of normal hearing, many people experience hearing disability (HD) in their everyday lives. This study assessed the ability of a number of demographic and auditory variables to explain and predict self-reported HD in people regarded as audiologically healthy via audiometric thresholds. DESIGN One-hundred eleven adults (ages 19 to 74) with clinically normal hearing (i.e., audiometric thresholds ≤25 dB HL at all octave and interoctave frequencies between 0.25 and 8 kHz and bilaterally symmetric hearing) were asked to complete the 12-item version of the Speech, Spatial, and Qualities of Hearing Scale (SSQ12) as a measure of self-reported HD. Patient history and a number of standard and expanded measures of hearing were assessed in a multivariate regression analysis to predict SSQ12 score. Patient history included age, sex, history of noise exposure, and tinnitus. Hearing-related measures included audiometry at standard and extended high frequencies, word recognition, otoacoustic emissions, auditory brainstem response, the Montreal Cognitive Assessment, and FM detection threshold. RESULTS History of impulse noise exposure, speech-intelligibility index, and FM detection threshold accurately predicted SSQ12 and were able to account for 40% of the SSQ12 score. These three measures were also able to predict whether participants self-reported HD with a sensitivity of 89% and specificity of 86%. CONCLUSIONS Although participant audiometric thresholds were within normal limits, higher thresholds, history of impulse noise exposure, and FM detection predicted self-reported HD.
Collapse
Affiliation(s)
| | | | - Judy G. Kopun
- Boys Town National Research Hospital, Omaha, NE 68131
| | | | | |
Collapse
|
27
|
Cutting Through the Noise: Noise-Induced Cochlear Synaptopathy and Individual Differences in Speech Understanding Among Listeners With Normal Audiograms. Ear Hear 2022; 43:9-22. [PMID: 34751676 PMCID: PMC8712363 DOI: 10.1097/aud.0000000000001147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Following a conversation in a crowded restaurant or at a lively party poses immense perceptual challenges for some individuals with normal hearing thresholds. A number of studies have investigated whether noise-induced cochlear synaptopathy (CS; damage to the synapses between cochlear hair cells and the auditory nerve following noise exposure that does not permanently elevate hearing thresholds) contributes to this difficulty. A few studies have observed correlations between proxies of noise-induced CS and speech perception in difficult listening conditions, but many have found no evidence of a relationship. To understand these mixed results, we reviewed previous studies that have examined noise-induced CS and performance on speech perception tasks in adverse listening conditions in adults with normal or near-normal hearing thresholds. Our review suggests that superficially similar speech perception paradigms used in previous investigations actually placed very different demands on sensory, perceptual, and cognitive processing. Speech perception tests that use low signal-to-noise ratios and maximize the importance of fine sensory details- specifically by using test stimuli for which lexical, syntactic, and semantic cues do not contribute to performance-are more likely to show a relationship to estimated CS levels. Thus, the current controversy as to whether or not noise-induced CS contributes to individual differences in speech perception under challenging listening conditions may be due in part to the fact that many of the speech perception tasks used in past studies are relatively insensitive to CS-induced deficits.
Collapse
|
28
|
Buran BN, McMillan GP, Keshishzadeh S, Verhulst S, Bramhall NF. Predicting synapse counts in living humans by combining computational models with auditory physiology. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:561. [PMID: 35105019 PMCID: PMC8800592 DOI: 10.1121/10.0009238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Aging, noise exposure, and ototoxic medications lead to cochlear synapse loss in animal models. As cochlear function is highly conserved across mammalian species, synaptopathy likely occurs in humans as well. Synaptopathy is predicted to result in perceptual deficits including tinnitus, hyperacusis, and difficulty understanding speech-in-noise. The lack of a method for diagnosing synaptopathy in living humans hinders studies designed to determine if noise-induced synaptopathy occurs in humans, identify the perceptual consequences of synaptopathy, or test potential drug treatments. Several physiological measures are sensitive to synaptopathy in animal models including auditory brainstem response (ABR) wave I amplitude. However, it is unclear how to translate these measures to synaptopathy diagnosis in humans. This work demonstrates how a human computational model of the auditory periphery, which can predict ABR waveforms and distortion product otoacoustic emissions (DPOAEs), can be used to predict synaptic loss in individual human participants based on their measured DPOAE levels and ABR wave I amplitudes. Lower predicted synapse numbers were associated with advancing age, higher noise exposure history, increased likelihood of tinnitus, and poorer speech-in-noise perception. These findings demonstrate the utility of this modeling approach in predicting synapse counts from physiological data in individual human subjects.
Collapse
Affiliation(s)
- Brad N Buran
- Oregon Hearing Research Center (OHRC), Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Garnett P McMillan
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| | - Sarineh Keshishzadeh
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Belgium
| | - Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
29
|
Maele TV, Keshishzadeh S, Poortere ND, Dhooge I, Keppler H, Verhulst S. The Variability in Potential Biomarkers for Cochlear Synaptopathy After Recreational Noise Exposure. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4964-4981. [PMID: 34670099 DOI: 10.1044/2021_jslhr-21-00064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PURPOSE Speech-in-noise tests and suprathreshold auditory evoked potentials are promising biomarkers to diagnose cochlear synaptopathy (CS) in humans. This study investigated whether these biomarkers changed after recreational noise exposure. METHOD The baseline auditory status of 19 normal-hearing young adults was analyzed using questionnaires, pure-tone audiometry, speech audiometry, and auditory evoked potentials. Nineteen subjects attended a music festival and completed the same tests again at Day 1, Day 3, and Day 5 after the music festival. RESULTS No significant relations were found between lifetime noise-exposure history and the hearing tests. Changes in biomarkers from the first session to the follow-up sessions were nonsignificant, except for speech audiometry, which showed a significant learning effect (performance improvement). CONCLUSIONS Despite the individual variability in prefestival biomarkers, we did not observe changes related to the noise-exposure dose caused by the attended event. This can indicate the absence of noise exposure-driven CS in the study cohort, or reflect that biomarkers were not sensitive enough to detect mild CS. Future research should include a more diverse study cohort, dosimetry, and results from test-retest reliability studies to provide more insight into the relationship between recreational noise exposure and CS. Supplemental Material https://doi.org/10.23641/asha.16821283.
Collapse
Affiliation(s)
- Tine Vande Maele
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| | - Nele De Poortere
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Sarah Verhulst
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| |
Collapse
|
30
|
Bramhall NF. Use of the auditory brainstem response for assessment of cochlear synaptopathy in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:4440. [PMID: 34972291 PMCID: PMC10880747 DOI: 10.1121/10.0007484] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/07/2021] [Indexed: 06/14/2023]
Abstract
Although clinical use of the auditory brainstem response (ABR) to detect retrocochlear disorders has been largely replaced by imaging in recent years, the discovery of cochlear synaptopathy has thrown this foundational measure of auditory function back into the spotlight. Whereas modern imaging now allows for the noninvasive detection of vestibular schwannomas, imaging technology is not currently capable of detecting cochlear synaptopathy, the loss of the synaptic connections between the inner hair cells and afferent auditory nerve fibers. However, animal models indicate that the amplitude of the first wave of the ABR, a far-field evoked potential generated by the synchronous firing of auditory nerve fibers, is highly correlated with synaptic integrity. This has led to many studies investigating the use of the ABR as a metric of synaptopathy in humans. However, these studies have yielded mixed results, leading to a lack of consensus about the utility of the ABR as an indicator of synaptopathy. This review summarizes the animal and human studies that have investigated the ABR as a measure of cochlear synaptic function, discusses factors that may have contributed to the mixed findings and the lessons learned, and provides recommendations for future use of this metric in the research and clinical settings.
Collapse
Affiliation(s)
- Naomi F Bramhall
- Veterans Affairs (VA) Rehabilitation Research & Development Service (RR&D) National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System Portland, Oregon 97239, USA
| |
Collapse
|
31
|
Le Prell CG. Investigational Medicinal Products for the Inner Ear: Review of Clinical Trial Characteristics in ClinicalTrials.gov. J Am Acad Audiol 2021; 32:670-694. [PMID: 35609594 PMCID: PMC9129919 DOI: 10.1055/s-0041-1735522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The previous 30 years have provided information on the mechanisms of cell death in the inner ear after noise exposure, ototoxic drug injury, and during aging, and clinical trials have emerged for all of these acquired forms of hearing loss. Sudden hearing loss is less well understood, but restoration of hearing after sudden hearing loss is also a long-standing drug target, typically using steroids as an intervention but with other agents of interest as well. PURPOSE The purpose of this review was to describe the state of the science regarding clinical testing of investigational medicinal products for the inner ear with respect to treatment or prevention of acquired hearing loss. DATA COLLECTION AND ANALYSIS Comprehensive search and summary of clinical trials listed in the National Library of Medicine (www. CLINICALTRIALS gov) database identified 61 clinical trials. RESULTS Study phase, status, intervention, and primary, secondary, and other outcomes are summarized for studies assessing prevention of noise-induced hearing loss, prevention of drug-induced hearing loss, treatment of stable sensorineural hearing loss, and treatment of sudden sensorineural hearing loss. CONCLUSION This review provides a comprehensive summary of the state of the science with respect to investigational medicinal products for the inner ear evaluated in human clinical trials, and the current challenges for the field.
Collapse
MESH Headings
- Cell Death/drug effects
- Cell Death/physiology
- Deafness/chemically induced
- Deafness/drug therapy
- Deafness/prevention & control
- Ear, Inner/pathology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/prevention & control
- Hearing Loss, Sensorineural/chemically induced
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/prevention & control
- Hearing Loss, Sudden/chemically induced
- Hearing Loss, Sudden/drug therapy
- Hearing Loss, Sudden/pathology
- Hearing Loss, Sudden/prevention & control
- Humans
- United States
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
32
|
Extended High-frequency Hearing Impairment Despite a Normal Audiogram: Relation to Early Aging, Speech-in-noise Perception, Cochlear Function, and Routine Earphone Use. Ear Hear 2021; 43:822-835. [PMID: 34700326 DOI: 10.1097/aud.0000000000001140] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Humans can hear up to 20 kHz. Emerging evidence suggests that hearing in the extended high frequencies (EHFs; >8 kHz) contributes to speech perception in noise. The objective of the present study was to describe the features of EHF hearing impairment in young adults with normal standard audiograms (0.25-8 kHz). Specifically, the study goals were to: (1) characterize the EHF hearing impairment and identify potential risk factors; (2) elucidate the age-related changes in EHF hearing; (3) determine the effect of EHF hearing impairment on speech-in-noise recognition; and (4) examine the extent to which EHF hearing impairment influences cochlear functioning in the standard frequencies. DESIGN Hearing thresholds at standard frequencies and EHFs (10, 12.5, 14, and 16 kHz), and speech recognition thresholds (SRTs) using digit triplets in multi-talker babble were measured in both ears from 222 participants (19-38 years; n = 444 ears) with normal audiograms (≤20 dB HL at standard frequencies). Test-retest measurement of hearing thresholds was obtained in a subset of 50 participants (100 ears), and clinical distortion product otoacoustic emissions (f2 frequency = 2, 3, 4, and 5 kHz) were recorded in 49 participants (98 ears). RESULTS Forty-two of 222 participants had EHF hearing impairment (>20 dB HL for at least one EHF in either ear). Only seven individuals with EHF impairment had significant case history and/or listening-in-noise complaints. A breakpoint in the threshold-age function was observed for the EHFs for males but not for females. Linear mixed models revealed a significant effect of age, pure-tone averages for speech frequencies (0.5, 1, 2, and 4 kHz), and EHFs and group (NH versus EHF hearing impairment) independent of each other on the SRTs. Individuals with EHF hearing impairment had less measurable emissions and when present, had a lower magnitude of otoacoustic emissions relative to NH controls. There was no difference in hearing thresholds, SRTs, or otoacoustic emissions between earphone users and nonusers. CONCLUSIONS The hearing thresholds for the EHFs exhibit signs of early auditory aging. Age-related deterioration in auditory function can be observed in the third decade of human life. A breakpoint in the threshold-age function suggests that rapid aging processes are operational at a relatively younger age (21 years) for males. The audibility of EHFs contributes to speech-in-noise recognition. EHF hearing impairment independent of age and speech frequencies can affect speech-in-noise recognition. Reduced distortion product otoacoustic emissions in the standard frequencies may suggest preclinical cochlear degeneration in individuals with EHF hearing impairment.
Collapse
|
33
|
Perugia E, Plack CJ, Stone MA. Low-sound-level auditory processing in noise-exposed adults. Hear Res 2021; 409:108309. [PMID: 34340022 DOI: 10.1016/j.heares.2021.108309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023]
Abstract
Early signs of noise-induced hearing damage are difficult to identify, as they are often confounded by factors such as age, audiometric thresholds, or even music experience. Much previous research has focused on deficits observed at high intensity levels. In contrast, the present study was designed to test the hypothesis that noise exposure causes a degradation in low-sound-level auditory processing in humans, as a consequence of dysfunction of the inner hair cell pathway. Frequency difference limens (FDLs) and amplitude modulation depth discrimination (MDD) were measured for five center frequencies (0.75, 1, 3, 4 and 6 kHz) at 15 and 25 dB sensation level (SL), as a function of noise exposure, age, audiometric hearing loss, and music experience. Forty participants, aged 33-75 years, with normal hearing up to 1 kHz and mild-to-moderate hearing loss above 2 kHz, were tested. Participants had varying degrees of self-reported noise exposure, and varied in music experience. FDL worsened as a function of age. Participants with music experience outperformed the non-experienced in both the FDL and MDD tasks. MDD thresholds were significantly better for high-noise-exposed, than for low-noise-exposed, participants at 25 dB SL, particularly at 6 kHz. No effects of age or hearing loss were observed in the MDD. It is possible that the association between MDD thresholds and noise exposure was not causal, but instead was mediated by other factors that were not measured in the study. The association is consistent, qualitatively, with a hypothesized loss of compression due to outer hair cell dysfunction.
Collapse
Affiliation(s)
- Emanuele Perugia
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK..
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, UK
| | - Michael A Stone
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, M13 9PL, UK.; Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9WL, UK.
| |
Collapse
|
34
|
Minimal and Mild Hearing Loss in Children: Association with Auditory Perception, Cognition, and Communication Problems. Ear Hear 2021; 41:720-732. [PMID: 31633598 DOI: 10.1097/aud.0000000000000802] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES "Minimal" and "mild" hearing loss are the most common but least understood forms of hearing loss in children. Children with better ear hearing level as low as 30 dB HL have a global language impairment and, according to the World Health Organization, a "disabling level of hearing loss." We examined in a population of 6- to 11-year-olds how hearing level ≤40.0 dB HL (1 and 4 kHz pure-tone average, PTA, threshold) is related to auditory perception, cognition, and communication. DESIGN School children (n = 1638) were recruited in 4 centers across the United Kingdom. They completed a battery of hearing (audiometry, filter width, temporal envelope, speech-in-noise) and cognitive (IQ, attention, verbal memory, receptive language, reading) tests. Caregivers assessed their children's communication and listening skills. Children included in this study (702 male; 752 female) had 4 reliable tone thresholds (1, 4 kHz each ear), and no caregiver reported medical or intellectual disorder. Normal-hearing children (n = 1124, 77.1%) had all 4 thresholds and PTA <15 dB HL. Children with ≥15 dB HL for at least 1 threshold, and PTA <20 dB (n = 245, 16.8%) had minimal hearing loss. Children with 20 ≤PTA <40 dB HL (n = 88, 6.0%) had mild hearing loss. Interaural asymmetric hearing loss ( left PTA - right PTA ≥10 dB) was found in 28.9% of those with minimal and 39.8% of those with mild hearing loss. RESULTS Speech perception in noise, indexed by vowel-consonant-vowel pseudoword repetition in speech-modulated noise, was impaired in children with minimal and mild hearing loss, relative to normal-hearing children. Effect size was largest (d = 0.63) in asymmetric mild hearing loss and smallest (d = 0.21) in symmetric minimal hearing loss. Spectral (filter width) and temporal (backward masking) perceptions were impaired in children with both forms of hearing loss, but suprathreshold perception generally related only weakly to PTA. Speech-in-noise (nonsense syllables) and language (pseudoword repetition) were also impaired in both forms of hearing loss and correlated more strongly with PTA. Children with mild hearing loss were additionally impaired in working memory (digit span) and reading, and generally performed more poorly than those with minimal loss. Asymmetric hearing loss produced as much impairment overall on both auditory and cognitive tasks as symmetric hearing loss. Nonverbal IQ, attention, and caregiver-rated listening and communication were not significantly impaired in children with hearing loss. Modeling suggested that 15 dB HL is objectively an appropriate lower audibility limit for diagnosis of hearing loss. CONCLUSIONS Hearing loss between 15 and 30 dB PTA is, at ~20%, much more prevalent in 6- to 11-year-old children than most current estimates. Key aspects of auditory and cognitive skills are impaired in both symmetric and asymmetric minimal and mild hearing loss. Hearing loss <30 dB HL is most closely related to speech perception in noise, and to cognitive abilities underpinning language and reading. The results suggest wider use of speech-in-noise measures to diagnose and assess management of hearing loss and reduction of the clinical hearing loss threshold for children to 15 dB HL.
Collapse
|
35
|
Efficacy of behavioral audiological tests in identifying cochlear synaptopathy: a systematic review. Eur Arch Otorhinolaryngol 2021; 279:577-594. [PMID: 34106328 DOI: 10.1007/s00405-021-06927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Cochlear synaptopathy or hidden hearing loss is difficult to assess due to the lack of sensitivity with standard audiological tests. Poor speech perception, especially in the presence of noise or tinnitus, is the most common complaint of these patients. The purpose of this systematic review is to identify articles in peer-reviewed journals that used behavioral measures in the effective assessment of cochlear synaptopathy or hidden hearing loss. METHODS The manuscripts were searched in various international databases, and the manuscripts were screened based on titles, abstracts, and full-length content. A total of 14 human studies were selected after the appropriate exclusion of other articles. RESULTS Results showed that high-frequency audiometry could be used for the early identification of cochlear synaptopathy. The tone in noise detection test can also be added in the test battery along with speech perception in noise. The amplitude modulation detection test, interaural phase difference, and differential sensitivity tests require more research before using them for the assessment of cochlear synaptopathy or hidden hearing loss. CONCLUSIONS Self-reports and questionnaires also help in determining the extent of noise exposure.
Collapse
|
36
|
Causon A, Munro KJ, Plack CJ, Prendergast G. The Role of the Clinically Obtained Acoustic Reflex as a Research Tool for Subclinical Hearing Pathologies. Trends Hear 2020; 24:2331216520972860. [PMID: 33357018 PMCID: PMC7768875 DOI: 10.1177/2331216520972860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acoustic reflex (AR) shows promise as an objective test for the presence of cochlear synaptopathy in rodents. The AR has also been shown to be reduced in humans with tinnitus compared to those without. The aim of the present study was twofold: (a) to determine if AR strength (quantified as both threshold and growth) varied with lifetime noise exposure, and thus provided an estimate of the degree of synaptopathy and (b) to identify which factors should be considered when using the AR as a quantitative measure rather than just present/absent responses. AR thresholds and growth functions were measured using ipsilateral and contralateral, broadband and tonal elicitors in adults with normal hearing and varying levels of lifetime noise exposure. Only the clinical standard 226 Hz probe tone was used. AR threshold and growth were not related to lifetime noise exposure, suggesting that routine clinical AR measures are not a sensitive measure when investigating the effects of noise exposure in audiometrically normal listeners. Our secondary, exploratory analyses revealed that AR threshold and growth were significantly related to middle-ear compliance. Listeners with higher middle-ear compliance (though still in the clinically normal range) showed lower AR thresholds and steeper AR growth functions. Furthermore, there was a difference in middle-ear compliance between the sexes, with males showing higher middle-ear compliance values than females. Therefore, it may be necessary to factor middle-ear compliance values into any analysis that uses the AR as an estimate of auditory function.
Collapse
Affiliation(s)
- Andrew Causon
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK.,Department of Psychology, Lancaster University, Lancaster, England
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, UK
| |
Collapse
|
37
|
The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise. Hear Res 2020; 400:108142. [PMID: 33310564 DOI: 10.1016/j.heares.2020.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Although acoustic communication is inevitably influenced by noise, behaviorally relevant sounds are perceived reliably. The noise-tolerant and -invariant responses of auditory neurons are thought to be the underlying mechanism. So, it is reasonable to speculate that neurons with best frequency tuned to behaviorally relevant sounds will play important role in noise-tolerant perception. Echolocating bats live in groups and emit multiple harmonic signals and analyze the returning echoes to extract information about the target features, making them prone to deal with noise in their natural habitat. The echolocation signal of Hipposideros pratti usually contains 3-4 harmonics (H1H4), the second harmonic has the highest amplitude and is thought to play an essential role during echolocation behavior. Therefore, it is reasonable to propose that neurons tuned to the H2, named the H2 neurons, can be more noise-tolerant to background noise. Taking advantage of bat's stereotypical echolocation signal and single-cell recording, our present study showed that the minimal threshold increases (12.2 dB) of H2 neurons in the auditory midbrain were comparable to increase in bat's call intensity (14.2 dB) observed in 70 dB SPL white noise condition, indicating that the H2 neurons could work as background noise monitor. The H2 neurons had higher minimal thresholds and sharper frequency tuning, which enabled them to be more tolerant to background noise. Furthermore, the H2 neurons had consistent best amplitude spikes and sharper intensity tuning in background white noise condition than in silence. Taken together, these results suggest that the H2 neurons might account for noise-tolerant perception of behaviorally relevant sounds.
Collapse
|
38
|
Sheppard A, Ralli M, Gilardi A, Salvi R. Occupational Noise: Auditory and Non-Auditory Consequences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8963. [PMID: 33276507 PMCID: PMC7729999 DOI: 10.3390/ijerph17238963] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022]
Abstract
Occupational noise exposure accounts for approximately 16% of all disabling hearing losses, but the true value and societal costs may be grossly underestimated because current regulations only identify hearing impairments in the workplace if exposures result in audiometric threshold shifts within a limited frequency region. Research over the past several decades indicates that occupational noise exposures can cause other serious auditory deficits such as tinnitus, hyperacusis, extended high-frequency hearing loss, and poor speech perception in noise. Beyond the audiogram, there is growing awareness that hearing loss is a significant risk factor for other debilitating and potentially life-threatening disorders such as cardiovascular disease and dementia. This review discusses some of the shortcomings and limitations of current noise regulations in the United States and Europe.
Collapse
Affiliation(s)
- Adam Sheppard
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Antonio Gilardi
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (M.R.); (A.G.)
| | - Richard Salvi
- Department of Communicative Disorders and Sciences and Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14221, USA;
| |
Collapse
|
39
|
Carcagno S, Plack CJ. Effects of age on psychophysical measures of auditory temporal processing and speech reception at low and high levels. Hear Res 2020; 400:108117. [PMID: 33253994 PMCID: PMC7812372 DOI: 10.1016/j.heares.2020.108117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/18/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
We found little evidence of greater age-related hearing declines at high sound levels. There are age-related temporal-processing declines independent of hearing loss. No evidence of age-related speech-reception deficits independent of hearing loss.
Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal noise exposure, and has been hypothesized to play a crucial role in age-related hearing declines in humans. It is not known to what extent age-related CS occurs in humans, and how it affects the coding of supra-threshold sounds and speech in noise. Because in rodents CS affects mainly low- and medium-spontaneous rate (L/M-SR) auditory-nerve fibers with rate-level functions covering medium-high levels, it should lead to greater deficits in the processing of sounds at high than at low stimulus levels. In this cross-sectional study the performance of 102 listeners across the age range (34 young, 34 middle-aged, 34 older) was assessed in a set of psychophysical temporal processing and speech reception in noise tests at both low, and high stimulus levels. Mixed-effect multiple regression models were used to estimate the effects of age while partialing out effects of audiometric thresholds, lifetime noise exposure, cognitive abilities (assessed with additional tests), and musical experience. Age was independently associated with performance deficits on several tests. However, only for one out of 13 tests were age effects credibly larger at the high compared to the low stimulus level. Overall these results do not provide much evidence that age-related CS, to the extent to which it may occur in humans according to the rodent model of greater L/M-SR synaptic loss, has substantial effects on psychophysical measures of auditory temporal processing or on speech reception in noise.
Collapse
Affiliation(s)
- Samuele Carcagno
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom; Manchester Centre for Audiology and Deafness, University of Manchester, Academic Health Science Centre, M13 9PL, United Kingdom
| |
Collapse
|
40
|
Krumbholz K, Hardy AJ, de Boer J. Automated extraction of auditory brainstem response latencies and amplitudes by means of non-linear curve registration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105595. [PMID: 32563894 PMCID: PMC7607223 DOI: 10.1016/j.cmpb.2020.105595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Animal results have suggested that auditory brainstem responses (ABRs) to transient sounds presented at supra-threshold levels may be useful for measuring hearing damage that is hidden to current audiometric tests. Evaluating such ABRs requires extracting the latencies and amplitudes of relevant deflections, or "waves". Currently, this is mostly done by human observers manually picking the waves' peaks and troughs in each individual response - a process that is both time-consuming and requiring of expert experience. Here, we propose a highly automated procedure for extracting individual ABR wave latencies and amplitudes based on the well-established methodology of non-linear curve registration. METHODS First, the to-be-analysed individual ABRs are temporally aligned - either with one another or, if available, with a pre-existing template - by locally compressing or stretching their time axes with smooth and invertible time warping functions. Then, the individual latencies and amplitudes of relevant ABR waves are obtained by picking the latencies of the waves' peaks and troughs on the common (aligned) time axis and combining these with the individual aligned responses and inverse time warping functions. RESULTS Using an example ABR data set with a wide range of response latencies and signal-to-noise ratios (SNRs), we test different choices for fitting the time warping functions. We cross-validate the warping results using independent response replicates and compare automatically and manually extracted latencies and amplitudes for ABR waves I and V. Using a Bayesian approach, we show that, for the best registration condition, automatic and manual data were statistically similar. CONCLUSIONS Non-linear curve registration can be used to temporally align individual ABRs and extract their wave latencies and amplitudes in a way that closely matches results from manual picking.
Collapse
Affiliation(s)
- Katrin Krumbholz
- School of Medicine, Hearing Sciences Group, University of Nottingham, United Kingdom.
| | - Alexander James Hardy
- School of Medicine, Hearing Sciences Group, University of Nottingham, United Kingdom; School of Psychology, University of Nottingham, United Kingdom
| | - Jessica de Boer
- School of Medicine, Hearing Sciences Group, University of Nottingham, United Kingdom
| |
Collapse
|
41
|
Chen KH, Su SB, Chen KT. An overview of occupational noise-induced hearing loss among workers: epidemiology, pathogenesis, and preventive measures. Environ Health Prev Med 2020; 25:65. [PMID: 33129267 PMCID: PMC7603754 DOI: 10.1186/s12199-020-00906-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
Occupational noise-induced hearing loss (ONIHL) is the most prevalent occupational disease in the world. The goal of this study was to review the epidemiology, pathogenesis, and preventive measures of ONIHL among workers and provide evidence for the implementation of control measures. Literature studies were identified from the MEDLINE, PubMed, Embase, Web of Science, and Google Scholar using the search terms “noise-induced hearing loss” “prevalence”, “pathogenesis”, and “preventive measures”. The articles reviewed in this report were limited from 2000 to 2020. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded. After a preliminary screening, all of the articles were reviewed and synthesized to provide an overview of the current status of ONIHL among workers. The mechanism of ONIHL among workers is a complex interaction between environmental and host factors (both genetic and acquired factors). The outcomes of noise exposure are different among individual subjects. Clinical trials are currently underway to evaluate the treatment effect of antioxidants on ONIHL. Noise exposure may contribute to temporary or permanent threshold shifts; however, even temporary threshold shifts may predispose an individual to eventual permanent hearing loss. Noise prevention programs are an important preventive measure in reducing the morbidity of ONIHL among workers.
Collapse
Affiliation(s)
- Kou-Huang Chen
- School of Mechanical and Electronic Engineering, Sanming University, Sanming, 365, Fujian Province, China
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, 710, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), No. 670, Chongde Road, East District, Tainan, 701, Taiwan. .,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
42
|
Longenecker RJ, Gu R, Homan J, Kil J. A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Front Neurosci 2020; 14:561185. [PMID: 33041759 PMCID: PMC7530258 DOI: 10.3389/fnins.2020.561185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) such as amikacin are commonly used in cystic fibrosis patients with opportunistic pulmonary infections including multi-drug resistant mycobacterium tuberculous and non-tuberculous mycobacterium. Unfortunately, this class of drugs is known to cause peripheral damage to the cochlea leading to hearing loss that can fluctuate and become permanent over time or multiple exposures. However, whether amikacin can lead to central auditory dysfunction like hyperacusis (increased sensitivity to sound) or tinnitus (perception of sound in the absence of acoustic stimulation) is not well-described in the literature. Thus, an animal model needs to be developed that documents these side effects in order to develop therapeutic solutions to reduce AG-induced auditory dysfunction. Here we present pioneer work in mice which demonstrates that amikacin can lead to fluctuating behavioral evidence of hyperacusis and tinnitus as assessed by the acoustic startle reflex. Additionally, electrophysiological assessments of hearing via auditory brainstem response demonstrate increased central activity in the auditory brainstem. These data together suggest that peripheral AG-induced dysfunction can lead to central hyperactivity and possible behavioral manifestations of hyperacusis and tinnitus. Importantly, we demonstrate that ebselen, a novel investigational drug that acts as both an antioxidant and anti-inflammatory, can mitigate AG-induced hyperacusis.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| |
Collapse
|
43
|
Carcagno S, Plack CJ. Effects of age on electrophysiological measures of cochlear synaptopathy in humans. Hear Res 2020; 396:108068. [PMID: 32979760 PMCID: PMC7593961 DOI: 10.1016/j.heares.2020.108068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022]
Abstract
Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal noise exposure, and has been hypothesized to play a crucial role in age-related hearing declines in humans. Because CS affects mainly low-spontaneous rate auditory nerve fibers, differential electrophysiological measures such as the ratio of the amplitude of wave I of the auditory brainstem response (ABR) at high to low click levels (WIH/WIL), and the difference between frequency following response (FFR) levels to shallow and deep amplitude modulated tones (FFRS-FFRD), have been proposed as CS markers. However, age-related audiometric threshold shifts, particularly prominent at high frequencies, may confound the interpretation of these measures in cross-sectional studies of age-related CS. To address this issue, we measured WIH/WIL and FFRS-FFRD using highpass masking (HP) noise to eliminate the contribution of high-frequency cochlear regions to the responses in a cross-sectional sample of 102 subjects (34 young, 34 middle-aged, 34 older). WIH/WIL in the presence of the HP noise did not decrease as a function of age. However, in the absence of HP noise, WIH/WIL showed credible age-related decreases even after partialing out the effects of audiometric threshold shifts. No credible age-related decreases of FFRS-FFRD were found. Overall, the results do not provide evidence of age-related CS in the low-frequency region where the responses were restricted by the HP noise, but are consistent with the presence of age-related CS in higher frequency regions.
Collapse
Affiliation(s)
- Samuele Carcagno
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom; Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, M13 9PL, United Kingdom
| |
Collapse
|
44
|
Doutres O, Sgard F, Terroir J, Perrin N, Jolly C, Gauvin C, Negrini A. A critical review of the literature on comfort of hearing protection devices: analysis of the comfort measurement variability. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2020; 28:447-458. [DOI: 10.1080/10803548.2020.1772546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Olivier Doutres
- Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Canada
| | - Franck Sgard
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Canada
| | | | - Nellie Perrin
- Institut national de recherche et de Sécurité (INRS), France
| | - Caroline Jolly
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Canada
| | - Chantal Gauvin
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Canada
| | - Alessia Negrini
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Canada
| |
Collapse
|
45
|
Noise-Induced Hearing Loss and its Prevention: Current Issues in Mammalian Hearing. CURRENT OPINION IN PHYSIOLOGY 2020; 18:32-36. [PMID: 32984667 DOI: 10.1016/j.cophys.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noise-induced hearing loss (NIHL) has been well investigated across diverse mammalian species and the potential for prevention of NIHL is of broad interest. To most efficiently develop novel therapeutic interventions, a good understanding of the current state of knowledge regarding mechanisms of injury is essential. The overarching goals of this review are to 1) concisely summarize the current state of knowledge, and 2) provide opinions on the most significant future trends and developments.
Collapse
|
46
|
Couth S, Prendergast G, Guest H, Munro KJ, Moore DR, Plack CJ, Ginsborg J, Dawes P. Investigating the effects of noise exposure on self-report, behavioral and electrophysiological indices of hearing damage in musicians with normal audiometric thresholds. Hear Res 2020; 395:108021. [PMID: 32631495 DOI: 10.1016/j.heares.2020.108021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 01/11/2023]
Abstract
Musicians are at risk of hearing loss due to prolonged noise exposure, but they may also be at risk of early sub-clinical hearing damage, such as cochlear synaptopathy. In the current study, we investigated the effects of noise exposure on electrophysiological, behavioral and self-report correlates of hearing damage in young adult (age range = 18-27 years) musicians and non-musicians with normal audiometric thresholds. Early-career musicians (n = 76) and non-musicians (n = 47) completed a test battery including the Noise Exposure Structured Interview, pure-tone audiometry (PTA; 0.25-8 kHz), extended high-frequency (EHF; 12 and 16 kHz) thresholds, otoacoustic emissions (OAEs), auditory brainstem responses (ABRs), speech perception in noise (SPiN), and self-reported tinnitus, hyperacusis and hearing in noise difficulties. Total lifetime noise exposure was similar between musicians and non-musicians, the majority of which could be accounted for by recreational activities. Musicians showed significantly greater ABR wave I/V ratios than non-musicians and were also more likely to report experience of - and/or more severe - tinnitus, hyperacusis and hearing in noise difficulties, irrespective of noise exposure. A secondary analysis revealed that individuals with the highest levels of noise exposure had reduced outer hair cell function compared to individuals with the lowest levels of noise exposure, as measured by OAEs. OAE level was also related to PTA and EHF thresholds. High levels of noise exposure were also associated with a significant increase in ABR wave V latency, but only for males, and a higher prevalence and severity of hyperacusis. These findings suggest that there may be sub-clinical effects of noise exposure on various hearing metrics even at a relatively young age, but do not support a link between lifetime noise exposure and proxy measures of cochlear synaptopathy such as ABR wave amplitudes and SPiN. Closely monitoring OAEs, PTA and EHF thresholds when conventional PTA is within the clinically 'normal' range could provide a useful early metric of noise-induced hearing damage. This may be particularly relevant to early-career musicians as they progress through a period of intensive musical training, and thus interventions to protect hearing longevity may be vital.
Collapse
Affiliation(s)
- Samuel Couth
- Manchester Centre for Audiology and Deafness, University of Manchester, UK.
| | | | - Hannah Guest
- Manchester Centre for Audiology and Deafness, University of Manchester, UK
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Manchester Academic Health Science Centre, Manchester University Hospitals NHS Foundation Trust, UK
| | - David R Moore
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Communication Sciences Research Center, Cincinnati Children's Hospital Medical Centre, OH, USA
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Psychology, Lancaster University, UK
| | | | - Piers Dawes
- Manchester Centre for Audiology and Deafness, University of Manchester, UK; Department of Linguistics, Macquarie University, Sydney, Australia
| |
Collapse
|
47
|
Shehorn J, Strelcyk O, Zahorik P. Associations between speech recognition at high levels, the middle ear muscle reflex and noise exposure in individuals with normal audiograms. Hear Res 2020; 392:107982. [DOI: 10.1016/j.heares.2020.107982] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
|
48
|
Bramhall NF, Niemczak CE, Kampel SD, Billings CJ, McMillan GP. Evoked Potentials Reveal Noise Exposure-Related Central Auditory Changes Despite Normal Audiograms. Am J Audiol 2020; 29:152-164. [PMID: 32182128 DOI: 10.1044/2019_aja-19-00060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose Complaints of auditory perceptual deficits, such as tinnitus and difficulty understanding speech in background noise, among individuals with clinically normal audiograms present a perplexing problem for audiologists. One potential explanation for these "hidden" auditory deficits is loss of the synaptic connections between the inner hair cells and their afferent auditory nerve fiber targets, a condition that has been termed cochlear synaptopathy. In animal models, cochlear synaptopathy can occur due to aging or exposure to noise or ototoxic drugs and is associated with reduced auditory brainstem response (ABR) wave I amplitudes. Decreased ABR wave I amplitudes have been demonstrated among young military Veterans and non-Veterans with a history of firearm use, suggesting that humans may also experience noise-induced synaptopathy. However, the downstream consequences of synaptopathy are unclear. Method To investigate how noise-induced reductions in wave I amplitude impact the central auditory system, the ABR, the middle latency response (MLR), and the late latency response (LLR) were measured in 65 young Veterans and non-Veterans with normal audiograms. Results In response to a click stimulus, the MLR was weaker for Veterans compared to non-Veterans, but the LLR was not reduced. In addition, low ABR wave I amplitudes were associated with a reduced MLR, but with an increased LLR. Notably, Veterans reporting tinnitus showed the largest mean LLRs. Conclusions These findings indicate that decreased peripheral auditory input leads to compensatory gain in the central auditory system, even among individuals with normal audiograms, and may impact auditory perception. This pattern of reduced MLR, but not LLR, was observed among Veterans even after statistical adjustment for sex and distortion product otoacoustic emission differences, suggesting that synaptic loss plays a role in the observed central gain. Supplemental Material https://doi.org/10.23641/asha.11977854.
Collapse
Affiliation(s)
- Naomi F. Bramhall
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland
| | | | - Sean D. Kampel
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
| | - Curtis J. Billings
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Garnett P. McMillan
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland
| |
Collapse
|
49
|
Breitzler L, Lau IH, Fonseca PJ, Vasconcelos RO. Noise-induced hearing loss in zebrafish: investigating structural and functional inner ear damage and recovery. Hear Res 2020; 391:107952. [DOI: 10.1016/j.heares.2020.107952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
|
50
|
Tepe V, Papesh M, Russell S, Lewis MS, Pryor N, Guillory L. Acquired Central Auditory Processing Disorder in Service Members and Veterans. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:834-857. [PMID: 32163310 DOI: 10.1044/2019_jslhr-19-00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose A growing body of evidence suggests that military service members and military veterans are at risk for deficits in central auditory processing. Risk factors include exposure to blast, neurotrauma, hazardous noise, and ototoxicants. We overview these risk factors and comorbidities, address implications for clinical assessment and care of central auditory processing deficits in service members and veterans, and specify knowledge gaps that warrant research. Method We reviewed the literature to identify studies of risk factors, assessment, and care of central auditory processing deficits in service members and veterans. We also assessed the current state of the science for knowledge gaps that warrant additional study. This literature review describes key findings relating to military risk factors and clinical considerations for the assessment and care of those exposed. Conclusions Central auditory processing deficits are associated with exposure to known military risk factors. Research is needed to characterize mechanisms, sources of variance, and differential diagnosis in this population. Existing best practices do not explicitly consider confounds faced by military personnel. Assessment and rehabilitation strategies that account for these challenges are needed. Finally, investment is critical to ensure that Veterans Affairs and Department of Defense clinical staff are informed, trained, and equipped to implement effective patient care.
Collapse
Affiliation(s)
- Victoria Tepe
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- The Geneva Foundation, Tacoma, WA
| | - Melissa Papesh
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Shoshannah Russell
- Walter Reed National Military Medical Center, Bethesda, MD
- Henry Jackson Foundation, Bethesda, MD
| | - M Samantha Lewis
- VA RR&D National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
- School of Audiology, Pacific University, Hillsboro, OR
| | - Nina Pryor
- Department of Defense Hearing Center of Excellence, JBSA Lackland, TX
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH
| | - Lisa Guillory
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia
| |
Collapse
|