1
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
2
|
James A, Rene ER, Bilyaminu AM, Chellam PV. Advances in amelioration of air pollution using plants and associated microbes: An outlook on phytoremediation and other plant-based technologies. CHEMOSPHERE 2024; 358:142182. [PMID: 38685321 DOI: 10.1016/j.chemosphere.2024.142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Globally, air pollution is an unfortunate aftermath of rapid industrialization and urbanization. Although the best strategy is to prevent air pollution, it is not always feasible. This makes it imperative to devise and implement techniques that can clean the air continuously. Plants and microbes have a natural potential to transform or degrade pollutants. Hence, strategies that use this potential of living biomass to remediate air pollution seem to be promising. The simplest future trend can be planting suitable plant-microbe species capable of removing air pollutants like SO2, CO2, CO, NOX and particulate matter (PM) along roadsides and inside the buildings. Established wastewater treatment strategies such as microbial fuel cells (MFC) and constructed wetlands (CW) can be suitably modified to ameliorate air pollution. Green architecture involving green walls and green roofs is facile and aesthetic, providing urban ecosystem services. Certain microbe-based bioreactors such as bioscrubbers and biofilters may be useful in small confined spaces. Several generative models have been developed to assist with planning and managing green spaces in urban locales. The physiological limitations of using living organisms can be circumvent by applying biotechnology and transgenics to improve their potential. This review provides a comprehensive update on not just the plants and associated microbes for the mitigation of air pollution, but also lists the technologies that are available and/or can be modified and used for air pollution control. The article also gives a detailed analysis of this topic in the form of strengths-weaknesses-opportunities-challenges (SWOC). The strategies mentioned in this review would help to attain corporate Environmental Social and Governance (ESG) and Sustainable Development Goals (SDGs), while reducing carbon footprint in the urban scenario. The review aims to emphasise that urbanization is possible while tackling air pollution using facile, green techniques involving plants and associated microbes.
Collapse
Affiliation(s)
- Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
3
|
Wang D, Ma Q, Lin H, Zhou J, Yuan S, Ma B, Bai Y, Qu J. Enhancement of micropollutant biotransformation by adding manganese sand in constructed wetlands. Heliyon 2023; 9:e15092. [PMID: 37089304 PMCID: PMC10119567 DOI: 10.1016/j.heliyon.2023.e15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Recent investigations have shown that the addition of manganese (Mn) sand to constructed wetlands (i.e., Mn-amended CWs) can improve the performance of organic micropollutants (MPs) removal. In addition to the direct oxidation and adsorption of Mn oxides, the indirect role of Mn oxides in MP biotransformation is crucial to the removal of MPs but has seldom been referred to. Herein, we constructed lab-scale CWs with or without the addition of natural Mn sand (∼35% Mn oxides) to decipher the influence of Mn oxides on the biotransformation of the six selected MPs which commonly existed in the wastewater. The experimental results showed that the addition of Mn sand to CWs can improve the removal of MPs (8.48% atrazine, 13.16% atenolol, and 6.27% sulfamethoxazole [pairwise Wilcoxon test p < 0.05]). Combining the detection of transformation products and metagenomic sequencing, we found that the enhanced removal of atrazine in the Mn-amended CWs was mainly due to the bioaugmented hydroxylation process. The enrichment of biotransformation-related genes and associated microbes of atenolol and sulfamethoxazole in Mn-amended CWs indicated that the addition of Mn sand to CWs can strengthen the biotransformation of MPs. Furthermore, we found that these MP-biodegrading microbes were widely present in the full-scale CWs. Overall, our research provides fundamental information and insights for further application of Mn-amended CWs in MP removal.
Collapse
|
4
|
Saez JM, González SK, Ocante TAL, Bigliardo AL, Briceño GE, Benimeli CS. Actinobacteria bioaugmentation and substrate evaluation for biobeds useful for the treatment of atrazine residues in agricultural fields. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115870. [PMID: 36056489 DOI: 10.1016/j.jenvman.2022.115870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Biopurification systems (BPS) or biobeds are bioprophylaxis systems to prevent pesticide point-source contamination, whose efficiency relies mostly on the pesticide removal capacity of the biomixture, the majority component of a BPS. The adaptation of the components of the biomixtures to local availabilities is a key aspect to ensure the sustainability of the system. In this work, the removal of atrazine (ATZ) was evaluated in biomixtures formulated with three sugarcane by-products as alternative lignocellulosic substrates. Based on the capacity of actinobacteria to tolerate and degrade diverse pesticides, the effect of biomixtures bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of biobeds. Also, the effect of ATZ and/or the bioaugmentation on microbial developments and enzymatic activities were studied. The biomixtures formulated with bagasse, filter cake, or harvest residue, reached pesticide removal values of 37-41% at 28 d of incubation, with t1/2 between 37.9 ± 0.4 d and 52.3 ± 0.4 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the biomixtures, reducing ATZ t1/2 3-fold regarding the controls, and achieving up to 72% of ATZ removal. Atrazine did not exert a clear effect on microbial developments, although most of the microbial counts were less in the contaminated biomixtures at the end of the assay. The bioaugmentation improved the development of the microbiota in general, specially actinobacteria and fungi, regarding the non-bioaugmented systems. The inoculation with Streptomyces sp. M7 enhanced acid phosphatase activity and/or reversed a possible effect of the pesticide over this enzymatic activity.
Collapse
Affiliation(s)
- Juliana M Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina
| | - Samanta K González
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Teresa A L Ocante
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Ana L Bigliardo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Gabriela E Briceño
- Centro de Excelencia en Investigación Biotecnológica Aplicada al medio Ambiente (CIBAMA), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, 4780000, Chile
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, Catamarca, 4700, Argentina.
| |
Collapse
|
5
|
James A, Singh DK. Atrazine detoxification by intracellular crude enzyme extracts derived from epiphytic root bacteria associated with emergent hydrophytes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:577-586. [PMID: 33999766 DOI: 10.1080/03601234.2021.1922043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study demonstrated atrazine detoxification by intracellular crude enzyme extracts of Pseudomonas spp. strains ACB and TLB. Indigenous bacterial protein-based remediation techniques could be an alternative to bioaugmentation which pose multiple challenges when applied to the field. Intracellular enzymes were extracted from strains ACB and TLB and their degradation potential of 10 mg L-1 was determined using Gas Chromatography; further, enzyme extracts were subjected to protein profiling studies. In span of 6 h, enzyme extracts of strain ACB showed maximum degradation at 30 °C and 40 °C (71%) and enzyme extracts of strain TLB showed maximum degradation at 40 °C (48%). Atrazine degradation by enzyme extracts of strain ACB showed maximum degradation at pH 7 (71%) and pH 6 (69%) in 6 h. Similarly, enzyme extracts of strain TLB showed maximal degradation at pH 6 (46%) in 6 h. The present study demonstrated, for the first time, efficient atrazine remediation by intracellular crude enzyme extracts from epiphytic root bacteria at a range of temperature and pH conditions. Protein profiling studies indicated that atrazine induced expression of CoA ester lyase and alkyl hydroperoxide reductase in the strains ACB and TLB respectively. Expressions of these proteins have never been associated with atrazine exposure.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
6
|
A Review on Recent Treatment Technology for Herbicide Atrazine in Contaminated Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245129. [PMID: 31888127 PMCID: PMC6950201 DOI: 10.3390/ijerph16245129] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
Atrazine is a kind of triazine herbicide that is widely used for weed control due to its good weeding effect and low price. The study of atrazine removal from the environment is of great significance due to the stable structure, difficult degradation, long residence time in environment, and toxicity on the organism and human beings. Therefore, a number of processing technologies are developed and widely employed for atrazine degradation, such as adsorption, photochemical catalysis, biodegradation, etc. In this article, with our previous research work, the progresses of researches about the treatment technology of atrazine are systematically reviewed, which includes the four main aspects of physicochemical, chemical, biological, and material-microbial-integrated aspects. The advantages and disadvantages of various methods are summarized and the degradation mechanisms are also evaluated. Specially, recent advanced technologies, both plant-microbial remediation and the material-microbial-integrated method, have been highlighted on atrazine degradation. Among them, the plant-microbial remediation is based on the combined system of soil-plant-microbes, and the material-microbial-integrated method is based on the synergistic effect of materials and microorganisms. Additionally, future research needs to focus on the excellent removal effect and low environmental impact of functional materials, and the coordination processing of two or more technologies for atrazine removal is also highlighted.
Collapse
|
7
|
Ahmad F, Ashraf N, Da-Chuan Y, Jabeen H, Anwar S, Wahla AQ, Iqbal S. Application of a novel bacterial consortium BDAM for bioremediation of bispyribac sodium in wheat vegetated soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:58-65. [PMID: 30978631 DOI: 10.1016/j.jhazmat.2019.03.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
Plant-bacterial mutualism has tremendous potential for remediation of herbicide contaminated soils. Generally, bacterial inoculation helps plants to grow well in the contaminated environment. Here, we investigated the impact of bispyribac sodium (BS) degrading bacterial consortium (BDAM) on BS remediation, plant growth promotion and BS accumulation in plant parts. Wheat (Triticum aestivum) was planted in BS spiked soil and inoculated with BDAM. Inoculation showed a beneficial effect on plant biomass production and degradation of BS in the rhizosphere and the rhizosheath. After 40 and 60 days of inoculation, the degradation of BS was more than 96% and approximately 100% respectively in the planted and inoculated soil spiked with 2 and 5 mg kg-1 BS. However, in planted and un-inoculated soil, the degradation of BS was 72% after 60 days of sowing. Furthermore, inoculated bacterial strains colonized both in rhizo- and endosphere of the inoculated plants. In comparison with the un-inoculated soil, significantly less accumulation of BS was found in the roots and shoots of the plants growing in inoculated soil. We report the efficiency of plant-bacterial partnership for enhanced biodegradation of BS and to eliminate the BS residual toxicity to non-target plants.
Collapse
Affiliation(s)
- Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Noreen Ashraf
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yin Da-Chuan
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Hina Jabeen
- Assistant Prof. Head Department of Microbiology, Women University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Samina Anwar
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, 38000, Pakistan
| | - Abdul Qadeer Wahla
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, 38000, Pakistan
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, 38000, Pakistan.
| |
Collapse
|
8
|
James A, Singh DK. Assessment of atrazine decontamination by epiphytic root bacteria isolated from emergent hydrophytes. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1404-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
9
|
Singh T, Singh DK. Assessing the Bacterial Community Structure in the Rhizoplane of Wetland Plants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:521-526. [PMID: 30182151 DOI: 10.1007/s00128-018-2426-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Plant-microorganism interaction in the rhizosphere is important for nutrient cycling, carbon sequestration in natural ecosystems, contaminant elimination and ecosystem functioning. Abundance of microbial communities and variation in species composition can be an imperative determinant of phytoremediation capability. In the present study we have assessed the bacterial community structure in the rhizoplane of wetland plants, Acorus calamus, Typha latifolia, and Phragmites karka using Terminal restriction fragment length polymorphism technique. The most dominant phylum, in the plants under study, was phylum Firmicutes, followed by Proteobacteria and Actinobacteria. Bacterial groups belonging to phylum Chloroflexi, Acidobacteria, Deferribacteres and Thermotogae also showed their presence in P. karka and T. latifolia but were absent in A. calamus. Diversity indices of bacterial community were assessed. The results of this study show the presence of bacterial phyla which play an important role in bioremediation of contaminants. Thus these plants can be used as potential candidates of phytoremediation.
Collapse
Affiliation(s)
- Tanvi Singh
- Department of Zoology, University of Delhi, Delhi, India.
| | - Dileep K Singh
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|