1
|
Chukavin NN, Filippova KO, Ermakov AM, Karmanova EE, Popova NR, Anikina VA, Ivanova OS, Ivanov VK, Popov AL. Redox-Active Cerium Fluoride Nanoparticles Selectively Modulate Cellular Response against X-ray Irradiation In Vitro. Biomedicines 2023; 12:11. [PMID: 38275372 PMCID: PMC10813610 DOI: 10.3390/biomedicines12010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Ionizing radiation-induced damage in cancer and normal cells leads to apoptosis and cell death, through the intracellular oxidative stress, DNA damage and disorders of their metabolism. Irradiation doses that do not lead to the death of tumor cells can result in the emergence of radioresistant clones of these cells due to the rearrangement of metabolism and the emergence of new mutations, including those in the genes responsible for DNA repair. The search for the substances capable of modulating the functioning of the tumor cell repair system is an urgent task. Here we analyzed the effect of cerium(III) fluoride nanoparticles (CeF3 NPs) on normal (human mesenchymal stem cells-hMSC) and cancer (MCF-7 line) human cells after X-ray radiation. CeF3 NPs effectively prevent the formation of hydrogen peroxide and hydroxyl radicals in an irradiated aqueous solution, showing pronounced antioxidant properties. CeF3 NPs are able to protect hMSC from radiation-induced proliferation arrest, increasing their viability and mitochondrial membrane potential, and, conversely, inducing the cell death of MCF-7 cancer cells, causing radiation-induced mitochondrial hyperpolarization. CeF3 NPs provided a significant decrease in the number of double-strand breaks (DSBs) in hMSC, while in MCF-7 cells the number of γ-H2AX foci dramatically increased in the presence of CeF3 4 h after irradiation. In the presence of CeF3 NPs, there was a tendency to modulate the expression of most analyzed genes associated with the development of intracellular oxidative stress, cell redox status and the DNA-repair system after X-ray irradiation. Cerium-containing nanoparticles are capable of providing selective protection of hMSC from radiation-induced injuries and are considered as a platform for the development of promising clinical radioprotectors.
Collapse
Affiliation(s)
- Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
- Scientific and Educational Center, State University of Education, Moscow 105005, Russia
| | - Kristina O. Filippova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
- Scientific and Educational Center, State University of Education, Moscow 105005, Russia
| | - Ekaterina E. Karmanova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Viktoriia A. Anikina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia;
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (N.N.C.); (K.O.F.); (A.M.E.); (E.E.K.); (N.R.P.); (V.A.A.)
| |
Collapse
|
2
|
Kolmanovich DD, Chukavin NN, Savintseva IV, Mysina EA, Popova NR, Baranchikov AE, Sozarukova MM, Ivanov VK, Popov AL. Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications. Polymers (Basel) 2023; 15:3840. [PMID: 37765694 PMCID: PMC10536467 DOI: 10.3390/polym15183840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2-x NPs). CeGdO2-x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2-x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications.
Collapse
Affiliation(s)
- Danil D. Kolmanovich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Irina V. Savintseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Elena A. Mysina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
3
|
Gudkov SV, Gao M, Simakin AV, Baryshev AS, Pobedonostsev RV, Baimler IV, Rebezov MB, Sarimov RM, Astashev ME, Dikovskaya AO, Molkova EA, Kozlov VA, Bunkin NF, Sevostyanov MA, Kolmakov AG, Kaplan MA, Sharapov MG, Ivanov VE, Bruskov VI, Kalinichenko VP, Aiyyzhy KO, Voronov VV, Pimpha N, Li R, Shafeev GA. Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5164. [PMID: 37512437 PMCID: PMC10386620 DOI: 10.3390/ma16145164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
With the help of laser ablation, a technology for obtaining nanosized crystalline selenium particles (SeNPs) has been created. The SeNPs do not exhibit significant toxic properties, in contrast to molecular selenium compounds. The administration of SeNPs can significantly increase the viabilities of SH-SY5Y and PCMF cells after radiation exposure. The introduction of such nanoparticles into the animal body protects proteins and DNA from radiation-induced damage. The number of chromosomal breaks and oxidized proteins decreases in irradiated mice treated with SeNPs. Using hematological tests, it was found that a decrease in radiation-induced leukopenia and thrombocytopenia is observed when selenium nanoparticles are injected into mice before exposure to ionizing radiation. The administration of SeNPs to animals 5 h before radiation exposure in sublethal and lethal doses significantly increases their survival rate. The modification dose factor for animal survival was 1.2. It has been shown that the introduction of selenium nanoparticles significantly normalizes gene expression in the cells of the red bone marrow of mice after exposure to ionizing radiation. Thus, it has been demonstrated that SeNPs are a new gene-protective and radioprotective agent that can significantly reduce the harmful effects of ionizing radiation.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Alexey S Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Roman V Pobedonostsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maksim B Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Maxim E Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Anastasia O Dikovskaya
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Elena A Molkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery A Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Nikolay F Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Mikhail A Sevostyanov
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Alexey G Kolmakov
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mikhail A Kaplan
- A. A. Baikov Institute of Metallurgy and Materials Science (IMET RAS) of the Russian Academy of Sciences, Leninsky Prospect, 49, 119334 Moscow, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Push-chino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, 142290 Pushchino, Russia
| | - Vladimir E Ivanov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Vadim I Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, 142290 Pushchino, Russia
| | - Valery P Kalinichenko
- Russian Scientific-Research Institute of Phytopathology of Russian Academy of Sciences, 143050 Big Vyazemy, Russia
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Russia
| | - Kuder O Aiyyzhy
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| | - Nuttaporn Pimpha
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) 111, Phahonyotin Rd, Klong Luang 12120, Thailand
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Georgy A Shafeev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia
| |
Collapse
|
4
|
Popov AL, Abakumov MA, Savintseva IV, Ermakov AM, Popova NR, Ivanova OS, Kolmanovich DD, Baranchikov AE, Ivanov VK. Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T 1 relaxivity and selective cytotoxicity to cancer cells. J Mater Chem B 2021; 9:6586-6599. [PMID: 34369536 DOI: 10.1039/d1tb01147b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern are possible gadolinium deposition in the brain and the development of systemic nephrogenic fibrosis after repeated use of MRI contrasts. Thus, there is an urgent need to develop a new generation of MRI contrasts that are safe and that have high selectivity in tissue accumulation with improved local contrast. Here, we report on a new type of theranostic MRI contrast, namely dextran stabilised, gadolinium doped cerium dioxide nanoparticles. These ultra-small (4-6 nm) Ce0.9Gd0.1O1.95 nanoparticles have been shown to possess excellent colloidal stability and high r1-relaxivity (3.6 mM-1 s-1). They are effectively internalised by human normal and cancer cells and demonstrate dose-dependent selective cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- A L Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky av., 31, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Protection from ionizing radiation-induced genotoxicity and apoptosis in rat bone marrow cells by HESA-A: a new herbal-marine compound. J Bioenerg Biomembr 2019; 51:371-379. [PMID: 31388813 DOI: 10.1007/s10863-019-09808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
HESA-A is an herbal-marine compound which improves the quality of life of end-stage cancer patients. The aim of the present study was to evaluate the possible protective effect of HESA-A against IR-induced genotoxicity and apoptosis in rat bone marrow. Rats were given HESA-A orally at doses of 150 and 300 mg/kg body weight for seven consecutive days. On the seventh day, the rats were irradiated with 4 Gy X-rays at 1 h after the last oral administration. The micronucleus assay, reactive oxygen species (ROS) level analysis, hematological analysis and flow cytometry were used to assess radiation antagonistic potential of HESA-A. Administration of 150 and 300 mg/kg of HESA-A to irradiated rats significantly reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs) and micronucleated normochromatic erythrocytes (MnNCEs), and also increased PCE/(PCE + NCE) ratio in bone marrow cells. Moreover, pretreatment of irradiated rats with HESA-A (150 and 300 mg/kg) significantly decreased ROS level and apoptosis in bone marrow cells, and also increased white blood cells count in peripheral blood. For the first time in this study, it was observed that HESA-A can have protective effects against radiation-induced genotoxicity and apoptosis in bone marrow cells. Therefore, HESA-A can be considered as a candidate for future studies to reduce the side effects induced by radiotherapy in cancer patients.
Collapse
|
6
|
Sharapov MG, Novoselov VI, Penkov NV, Fesenko EE, Vedunova MV, Bruskov VI, Gudkov SV. Protective and adaptogenic role of peroxiredoxin 2 (Prx2) in neutralization of oxidative stress induced by ionizing radiation. Free Radic Biol Med 2019; 134:76-86. [PMID: 30605715 DOI: 10.1016/j.freeradbiomed.2018.12.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 01/04/2023]
Abstract
A radioprotective effect of exogenous recombinant peroxiredoxin 2 (Prx2) was revealed and characterized using an animal model of whole body X-ray irradiation at sublethal and lethal doses. Prx2 belongs to an evolutionarily ancient family of peroxidases that are involved in enzymatic degradation of a wide variety of organic and inorganic hydroperoxides. Apart from that, the oxidized form of Prx2 also exhibits chaperone activity, thereby preventing protein misfolding and aggregation under oxidative stress. Intravenous administration of Prx2 in animals at a concentration of 20 µg/g 15 min before exposure to ionizing radiation contributes to a significantly higher survival rate, suppresses the development of leucopenia and thrombocytopenia, as well as protects the bone marrow cells from genome DNA damage. Moreover, injection of Prx2 leads to suppression of apoptosis, stimulates cell proliferation and results in a more rapid recovery of the cell redox state. Exogenous Prx2 neutralizes the effect of the priming dose on the second irradiation of the cells. The radioprotective properties of exogenous Prx2 are stipulated by its broad substrate peroxidase activity, chaperone activity in the oxidized state, and are also due to the signal-regulatory function of Prx2 mediated by the regulation of the level of hydroperoxides as well as via interaction with redox-sensitive regulatory proteins.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - V I Novoselov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - N V Penkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - E E Fesenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - M V Vedunova
- Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
| | - V I Bruskov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - S V Gudkov
- Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia.
| |
Collapse
|
7
|
Simakin AV, Astashev ME, Baimler IV, Uvarov OV, Voronov VV, Vedunova MV, Sevost'yanov MA, Belosludtsev KN, Gudkov SV. The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. J Phys Chem B 2019; 123:1869-1880. [PMID: 30696249 DOI: 10.1021/acs.jpcb.8b11087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This Article covers the influence of the concentration of gold nanoparticles on laser-induced water decomposition. It was established that addition of gold nanoparticles intensifies laser-induced water decomposition by almost 2 orders of magnitude. The water decomposition rate was shown to be maximal at a nanoparticle concentration around 1010 NP/mL, whereas a decrease or increase of nanoparticle concentration leads to a decrease of water decomposition rate. It was demonstrated that, if the concentration of nanoparticles in water-based colloid was less than 1010 NP/mL, laser irradiation of the colloid caused formation of molecular hydrogen, hydrogen peroxide, and molecular oxygen. If the concentration of nanoparticles exceeded 1011 NP/mL, only two products, molecular hydrogen and hydrogen peroxide, were formed. Correlations between the water decomposition rate and the main optical and acoustic parameters of optical breakdown-generated plasma were investigated. Variants of laser-induced decomposition of colloidal solutions of nanoparticles based on organic solvents (ethanol, propanol-2, butanol-2, diethyl ether) were also analyzed.
Collapse
Affiliation(s)
- Aleksander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Maxim E Astashev
- Institute of Cell Biophysics of the Russian Academy of Sciences , 3 Institutskaya St. , Pushchino, Moscow Region 119991 , Russia
| | - Ilya V Baimler
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia.,Moscow Institute of Physics and Technology , Institutsky Lane 9 , Dolgoprudny, Moscow Region 141700 , Russia
| | - Oleg V Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Valery V Voronov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia
| | - Maria V Vedunova
- Institute of Biology and Biomedicine , Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Ave. , Nizhny Novgorod 603950 , Russia
| | - Mikhail A Sevost'yanov
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences , 49 Leninskiy Ave. , Moscow 119334 , Russia
| | | | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences , 38 Vavilova St. , Moscow 119991 , Russia.,Institute of Biology and Biomedicine , Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Ave. , Nizhny Novgorod 603950 , Russia.,Moscow Regional Research and Clinical Institute (MONIKI) , 61/2 Shchepkina St. , Moscow 129110 , Russia
| |
Collapse
|
8
|
Unmodified hydrated С60 fullerene molecules exhibit antioxidant properties, prevent damage to DNA and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 15:37-46. [DOI: 10.1016/j.nano.2018.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/19/2018] [Accepted: 09/04/2018] [Indexed: 12/25/2022]
|
9
|
Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J, Agrawal DK. Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med 2017; 15:232. [PMID: 29121966 PMCID: PMC5680756 DOI: 10.1186/s12967-017-1338-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/04/2017] [Indexed: 11/26/2022] Open
Abstract
Medical imaging has become a central component of patient care to ensure early and accurate diagnosis. Unfortunately, many imaging modalities use ionizing radiation to generate images. Ionizing radiation even in low doses can cause direct DNA damage and generate reactive oxygen species and free radicals, leading to DNA, protein, and lipid membrane damage. This cell damage can lead to apoptosis, necrosis, teratogenesis, or carcinogenesis. As many as 2% of cancers (and an associated 15,000 deaths annually) can be linked to computed tomography exposure alone. Radioprotective agents have been investigated using various models including cells, animals, and recently humans. The data suggest that radioprotective agents working through a variety of mechanisms have the potential to decrease free radical damage produced by ionizing radiation. Radioprotective agents may be useful as an adjunct to medical imaging to reduced patient morbidity and mortality due to ionizing radiation exposure. Some radioprotective agents can be found in high quantities in antioxidant rich foods, suggesting that a specific diet recommendation could be beneficial in radioprotection.
Collapse
Affiliation(s)
- Tyler A. Smith
- Department of Radiology, University of Utah, 30 North 1900 East #1A071, Salt Lake City, UT 84132 USA
| | - Daniel R. Kirkpatrick
- Department of Clinical & Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178 USA
| | - Sean Smith
- Department of Clinical & Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178 USA
| | - Trevor K. Smith
- Western University of the Pacific School of Medicine, CA Campus, 309 E. Second St, Pomona, CA 91766 USA
| | | | - Aparna Kailasam
- Department of Clinical & Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178 USA
| | | | - Johanna Schubert
- Department of Clinical & Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178 USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178 USA
| |
Collapse
|
10
|
Ivanov VE, Usacheva AM, Chernikov AV, Bruskov VI, Gudkov SV. Formation of long-lived reactive species of blood serum proteins induced by low-intensity irradiation of helium-neon laser and their involvement in the generation of reactive oxygen species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:36-43. [DOI: 10.1016/j.jphotobiol.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/29/2022]
|
11
|
Gudkov SV, Chernikov AV, Bruskov VI. Chemical and radiological toxicity of uranium compounds. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216060517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Popov A, Zaichkina SI, Popova NR, Rozanova OM, Romanchenko SP, Ivanova OS, Smirnov AA, Mironova EV, Selezneva II, Ivanov VK. Radioprotective effects of ultra-small citrate-stabilized cerium oxide nanoparticles in vitro and in vivo. RSC Adv 2016. [DOI: 10.1039/c6ra18566e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Different radioprotective action mechanisms of CeO2 nanoparticles in vitro and in vivo are demonstrated and discussed.
Collapse
Affiliation(s)
- A. L. Popov
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - S. I. Zaichkina
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - N. R. Popova
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - O. M. Rozanova
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - S. P. Romanchenko
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - O. S. Ivanova
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - A. A. Smirnov
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - E. V. Mironova
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
| | - I. I. Selezneva
- Institute of Theoretical and Experimental Biophysics
- Russian Academy of Sciences
- Moscow region
- 142290 Russia
- Pushchino State Institute of Natural Sciences
| | - V. K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
- National Research Tomsk State University
| |
Collapse
|
13
|
Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted Radionuclide Therapy of Human Tumors. Int J Mol Sci 2015; 17:E33. [PMID: 26729091 PMCID: PMC4730279 DOI: 10.3390/ijms17010033] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/07/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022] Open
Abstract
Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St, 3, Pushchino, Moscow 142290, Russia.
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Vavilova St, 38, Moscow 119991, Russia.
| | - Natalya Yu Shilyagina
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
| | - Vladimir A Vodeneev
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
| | - Andrei V Zvyagin
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney 2109, Australia.
| |
Collapse
|
14
|
Gudkov SV, Popova NR, Bruskov VI. Radioprotective substances: History, trends and prospects. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915040120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Garmash SA, Smirnova VS, Karp OE, Usacheva AM, Berezhnov AV, Ivanov VE, Chernikov AV, Bruskov VI, Gudkov SV. Pro-oxidative, genotoxic and cytotoxic properties of uranyl ions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 127:163-170. [PMID: 23312590 DOI: 10.1016/j.jenvrad.2012.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/21/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
It is demonstrated that hydroxyl radicals and hydrogen peroxide are formed under the action of uranyl ions in aqueous solutions containing no reducing agents. In the presence of uranyl ions, formation of 8-oxoguanine in DNA and long-lived protein radicals are observed in vitro. It is shown that the pro-oxidant properties of uranyl at micromolar concentrations mostly result from the physico-chemical nature of the compound rather than its radioactive decay. Uranyl ions lead to damage in DNA and proteins causing death of HEp-2 cells by necrotic pathway. It is revealed that the uranyl ions enhance radiation-induced oxidative stress and significantly increase a death rate of mice exposed to sublethal doses of X-rays.
Collapse
Affiliation(s)
- S A Garmash
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Pushchino State University, Pushchino, Moscow Region 142290, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Belosludtsev KN, Garmash SA, Belosludtseva NV, Belova SP, Berezhnov AV, Gudkov SV. Study of the mechanisms of cytotoxic effect of uranyl nitrate. Biophysics (Nagoya-shi) 2012; 57:607-612. [DOI: 10.1134/s000635091205003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
|
17
|
Asadullina NR, Usacheva AM, Gudkov SV. Protection of mice against X-ray injuries by the post-irradiation administration of inosine-5'-monophosphate. JOURNAL OF RADIATION RESEARCH 2012; 53:211-216. [PMID: 22510593 DOI: 10.1269/jrr.11050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of the present study was to investigate the radiation modulating properties of inosine-5'-monophosphate (IMP). Mice injected introperitoneally (i.p.) with IMP 15 minutes after irradiation with a lethal irradiation dose of 7 Gy have better survival rates comparative to irradiated mice non treated with IMP. The dose reduction factor of the IMP is 1.22. Using a hematologdical test we demonstrated that administration of IMP alleviates the symptoms of radiation-induced leukopenia and thrombocytopenia. The DNA damage in bone marrow and thymus cells of irradiated mice was measured by flow cytofluorometry and micronucleus test (MN-test). The tests show that i.p. administration of IMP to irradiated animals leads to a significant reduction of the DNA damage level. In this paper we show that IMP substantially modulates the damaging effects of ionizing radiation protecting irradiated mice and it is a promising agent for a treatment of leukopenia.
Collapse
Affiliation(s)
- Nelli R Asadullina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|