1
|
Huang X, Borgström B, Stegmayr J, Abassi Y, Kruszyk M, Leffler H, Persson L, Albinsson S, Massoumi R, Scheblykin IG, Hegardt C, Oredsson S, Strand D. The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin. ACS CENTRAL SCIENCE 2018; 4:760-767. [PMID: 29974072 PMCID: PMC6026786 DOI: 10.1021/acscentsci.8b00257] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 05/13/2023]
Abstract
Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating β-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Björn Borgström
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - John Stegmayr
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Yasmin Abassi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Monika Kruszyk
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, BMC C12, 221 84 Lund, Sweden
| | - Lo Persson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Lund University, BMC D12, 221 84 Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Scheelevägen 8, 223 63 Lund, Sweden
| | - Ivan G Scheblykin
- Department of Chemical Physics and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Cecilia Hegardt
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Medicon Village, 223 81 Lund, Sweden
| | - Stina Oredsson
- Department of Biology, Lund University, Sölvegatan 35C, 223 62 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
2
|
Vasilyeva SV, Grin IR, Chelobanov BP, Stetsenko DA. 2',3'-Dideoxyuridine triphosphate conjugated to SiO 2 nanoparticles: Synthesis and evaluation of antiproliferative activity. Bioorg Med Chem Lett 2018; 28:1248-1251. [PMID: 29506959 DOI: 10.1016/j.bmcl.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/05/2023]
Abstract
A conjugate of triphosphorylated 2',3'-dideoxyuridine (ddU) with SiO2 nanoparticles was obtained via the CuAAC click chemistry between a γ-alkynyl ddU triphosphate and azido-modified SiO2 nanoparticles. Assessment of cytotoxicity in human breast adenocarcinoma MCF7 cells demonstrated that ddU triphosphate conjugated to SiO2 nanoparticles exhibited a 50% decrease in cancer cell growth at a concentration of 183 ± 57 µg/mL, which corresponds to 22 ± 7 µM of the parent nucleotide, whereas the parent nucleoside, nucleotide and alkynyl triphosphate precursor do not show any cytotoxicity. The data provide an example of remarkable potential of novel conjugates of SiO2 nanoparticles with phosphorylated nucleoside analogues, even those, which have not been used previously as therapeutics, for application as new anticancer agents.
Collapse
Affiliation(s)
- Svetlana V Vasilyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| | - Inga R Grin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Boris P Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry A Stetsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Vasilyeva SV, Shtil AA, Petrova AS, Balakhnin SM, Achigecheva PY, Stetsenko DA, Silnikov VN. Conjugates of phosphorylated zalcitabine and lamivudine with SiO2 nanoparticles: Synthesis by CuAAC click chemistry and preliminary assessment of anti-HIV and antiproliferative activity. Bioorg Med Chem 2017; 25:1696-1702. [DOI: 10.1016/j.bmc.2017.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 12/01/2022]
|
4
|
Vasilyeva SV, Filichev VV, Boutorine AS. Application of Cu(I)-catalyzed azide-alkyne cycloaddition for the design and synthesis of sequence specific probes targeting double-stranded DNA. Beilstein J Org Chem 2016; 12:1348-60. [PMID: 27559384 PMCID: PMC4979877 DOI: 10.3762/bjoc.12.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022] Open
Abstract
Efficient protocols based on Cu(I)-catalyzed azide-alkyne cycloaddition were developed for the synthesis of conjugates of pyrrole-imidazole polyamide minor groove binders (MGB) with fluorophores and with triplex-forming oligonucleotides (TFOs). Diverse bifunctional linkers were synthesized and used for the insertion of terminal azides or alkynes into TFOs and MGBs. The formation of stable triple helices by TFO-MGB conjugates was evaluated by gel-shift experiments. The presence of MGB in these conjugates did not affect the binding parameters (affinity and triplex stability) of the parent TFOs.
Collapse
Affiliation(s)
- Svetlana V Vasilyeva
- Institute of Chemical Biology & Fundamental Medicine, SB of RAS, pr. Lavrent’eva 8, 630090 Novosibirsk, Russia
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Alexandre S Boutorine
- Structure and Instability of Genomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, INSERM U 1154, CNRS UMR 7196, 57 rue Cuvier, C.P. 26, 75231 Paris cedex 05, France
| |
Collapse
|
5
|
Vasilyeva SV, Kuznetsova AS, Khalyavina JG, Glazunova VA, Shtil AA, Gornostaev LM, Silnikov VN. Novel fluorescent pyrimidine nucleosides containing 2,1,3-benzoxadiazole and naphtho-[1,2,3-CD] Indole-6 (2H)-one fragments. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:615-25. [PMID: 25105452 DOI: 10.1080/15257770.2014.913064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A series of novel fluorescent pyrimidine nucleosides containing 2,1,3-benzoxadiazole or naphtho[1,2,3-cd]indole-6 (2h)-one fragments was designed and synthesized. Introduction of fluorescent fragments into the position 5 of the uridine or cytidine heterocycle was carried out in two ways: by Sonogashira Coupling Reaction and CuI-catalyzed cycloaddition ("click" reaction). The obtained nucleoside derivatives became fluorescent due to the inserted fragments. The excitation wavelength (440-450 nm) was outside the absorption band of many biomolecules and significantly differed from the emission wavelength (560-600 nm). In addition, the intended nucleoside analogs were shown to kill cultured human tumor cells at submicromolar concentrations.
Collapse
Affiliation(s)
- Svetlana V Vasilyeva
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
Kupryushkin MS, Nekrasov MD, Stetsenko DA, Pyshnyi DV. Efficient functionalization of oligonucleotides by new achiral nonnucleosidic monomers. Org Lett 2014; 16:2842-5. [PMID: 24820262 DOI: 10.1021/ol500668n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel synthetic strategy has been designed for preparation of achiral nonnucleosidic phosphoramidite monomers for automated solid-phase oligonucleotide synthesis. It is based on O-DMTr-protected 4-(2-hydroxyethyl)-morpholine-2,3-dione as the key compound and a family of building blocks obtained by its ring-opening by primary aliphatic amines. A series of nonnucleosidic phosphoramidites containing various side-chain functionalities was synthesized, and corresponding oligodeoxyribonucleotides incorporating modified units in single or multiple positions along the chain were prepared.
Collapse
Affiliation(s)
- Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | | | | | | |
Collapse
|