1
|
Bouderlique E, Tang E, Perez J, Ea HK, Renaudin F, Coudert A, Vandermeersch S, Bazin D, Haymann JP, Saint-Jacques C, Frochot V, Daudon M, Letavernier E. Inflammation plays a critical role in 2,8-dihydroxyadenine nephropathy. CR CHIM 2022. [DOI: 10.5802/crchim.92] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
2
|
Rashid I, Verma A, Tiwari P, D’Cruz S. A deficiência de adenina fosforibosiltransferase leva à disfunção do aloenxerto renal em receptores de transplante renal: uma revisão sistemática. J Bras Nefrol 2022. [DOI: 10.1590/2175-8239-jbn-2021-0283pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Antecedentes: A deficiência de adenina fosforibosiltransferase (APRT) tem grandes implicações na sobrevida do enxerto em pacientes transplantados renais. Esta revisão sistemática investigou o padrão diagnóstico, a abordagem de tratamento e os desfechos do transplante renal entre pacientes transplantados renais com deficiência de adenina fosforibosiltransferase. Material e métodos: Os artigos que relatam sobre a enzima APRT e a disfunção do aloenxerto renal foram recuperados do PubMed/Medline, ScienceDirect, Biblioteca Cochrane e bancos de dados do Google Acadêmico. Utilizou-se a análise descritiva para extrair inferências. Resultados: Foram incluídos participantes que receberam 39 enxertos, a maioria dos quais provenientes de doadores vivos seguidos por doadores falecidos e doadores cadáveres. Foi relatado tempo de sobrevida do enxerto superior a 6 meses em 23 (76,7%) pacientes, enquanto outros 7 (23,3%) pacientes tiveram tempo de sobrevida do enxerto inferior a 6 meses. Apenas 4 (13,3%) pacientes apresentaram deficiência de APRT antes do transplante. Após acompanhamento, um terço dos pacientes, 10 (33,3%) apresentaram função do enxerto estável, 1 paciente teve perda do aloenxerto, 8 (26,6%) pacientes apresentaram função retardada do enxerto, enquanto os 11 (36,6%) pacientes restantes tiveram disfunção crônica do enxerto renal. Conclusões: A deficiência de APRT é uma causa subestimada e reversível de nefropatia cristalina que leva à disfunção do aloenxerto renal ou à perda total do aloenxerto. Os resultados deste estudo pedem a inclusão desta condição no diagnóstico diferencial de nefropatia cristalina, mesmo na ausência de um histórico de nefrolitíase.
Collapse
Affiliation(s)
- Ishfaq Rashid
- National Institute of Pharmaceutical Education and Research, India
| | - Ashish Verma
- National Institute of Pharmaceutical Education and Research, India
| | - Pramil Tiwari
- National Institute of Pharmaceutical Education and Research, India
| | | |
Collapse
|
3
|
Rashid I, Verma A, Tiwari P, D’Cruz S. Adenine phosphoribosyl transferase deficiency leads to renal allograft dysfunction in kidney transplant recipients: a systematic review. J Bras Nefrol 2022; 44:403-416. [PMID: 35635787 PMCID: PMC9518620 DOI: 10.1590/2175-8239-jbn-2021-0283en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Adenine phosphoribosyl transferase (APRT) deficiency has great implications on graft survival in kidney transplant patients. This systematic review investigated the diagnostic pattern, treatment approach, and kidney transplant outcomes among kidney transplant patients with adenine phosphoribosyl transferase deficiency. Material and methods: Articles reporting the APRT enzyme deficiency and kidney allograft dysfunction were retrieved from PubMed/Medline, ScienceDirect, Cochrane library and Google scholar databases. Descriptive analysis was used to draw inferences. Results: The results from 20 selected studies covering 30 patients receiving 39 grafts had an average age of 46.37 years are presented. Graft survival time of more than 6 months was reported in 23 (76.7%) patients, while other 7 (23.3%) patients had graft survival time of less than 6 months. Only 4 (13.3%) patients had APRT deficiency before transplantation. After follow-up, one-third of the patients 10 (33.3%) had stable graft function, 1 patient had allograft loss, 8 (26.6%) patients had delayed graft function while the remaining 11 (36.6%) patients had chronic kidney graft dysfunction. Conclusions: APRT deficiency is an under-recognized, treatable condition that causes reversible crystalline nephropathy, leading to loss of allograft or allograft dysfunction. The study results showed that inclusion of genetic determination of APRT deficiency in the differential diagnosis of crystalline nephropathy, even in the absence of a history of nephrolithiasis, can improve renal outcomes and may improve allograft survival.
Collapse
Affiliation(s)
- Ishfaq Rashid
- National Institute of Pharmaceutical Education and Research, India
| | - Ashish Verma
- National Institute of Pharmaceutical Education and Research, India
| | - Pramil Tiwari
- National Institute of Pharmaceutical Education and Research, India
| | | |
Collapse
|
4
|
Gao Y, Yu Y, Qin W, Fan N, Qi Y, Chen H, Duan W. Uricase-deficient rats with similarly stable serum uric acid to human’s are sensitive model animals for studying hyperuricemia. PLoS One 2022; 17:e0264696. [PMID: 35239728 PMCID: PMC8893661 DOI: 10.1371/journal.pone.0264696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to provide a sensitive model animal for studying hyperuricemia. Male uricase-deficient rats, named Kunming-DY rats, were raised for 130 days, or orally administered with purines and other chemicals. Serum uric acid (SUA) in the animals was assayed, and the UA level in their organs and their 24-h excretion was determined. Genes in the jejunum, ileum, kidney and liver related to UA synthesis and transportation were detected by quantitative RNA sequencing. Uricase-deficient rats have a high level of SUA and are sensitive to xanthine, adenosine, inosine, allopurinol, and alcohol. Besides, the high level of SUA in male uricase-deficient rats was stable, much higher than that in wild-type rats but similar to that in men. The distribution pattern of UA in uricase-deficient rats’ organs was different from that in wild-type rats. The kidney, liver, and small intestine were the top three organs where UA distributed, but the UA in the small intestine, colon, lung, thymus, and brain was less affected by uricase deficiency, indicating that these organs are constitutive distribution organs in UA. The 24-h UA excreted by a uricase-deficient rat was about five times higher than that excreted by a wild-type rat. However, the 24-h UA excreted through feces was not significantly changed. Both the urine volume and UA in uricase-deficient rats significantly increased, and more than 90% of UA was excreted via urine. The expression of xanthine dehydrogenase was not upregulated. Some genes of transporter associated with uric acid excretion in the kidney were significantly regulated, though not sufficient to explain the increase in SUA. In conclusion, male uricase-deficient rats’ UA metabolism is similar to that of men. The elevation of SUA in uricase-deficient rats is caused by uricase deficiency, and uricase-deficient rats are a sensitive model for studying hyperuricemia.
Collapse
Affiliation(s)
- Yinfang Gao
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yun Yu
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wan Qin
- The Department of Pathology, School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan Province, China
| | - Nan Fan
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yalin Qi
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Huan Chen
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Weigang Duan
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
- * E-mail:
| |
Collapse
|
5
|
Yamazaki K, Miyazawa K, Nida Y, Furuichi K, Yokoyama H. Rapidly progressive kidney dysfunction and crystal casts associated with adenine phosphoribosyltransferase (APRT) deficiency-lessons for the clinical nephrologist. J Nephrol 2021; 34:2147-2149. [PMID: 33826114 DOI: 10.1007/s40620-021-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/26/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Keita Yamazaki
- Department of Nephrology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan.
| | - Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa, Japan
| | - Yo Nida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada, Kahoku, Ishikawa, Japan
| | - Kengo Furuichi
- Department of Nephrology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Hitoshi Yokoyama
- Department of Nephrology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| |
Collapse
|
6
|
Runolfsdottir HL, Lin TL, Goldfarb DS, Sayer JA, Michael M, Ketteridge D, Rich PR, Edvardsson VO, Palsson R. Are conventional stone analysis techniques reliable for the identification of 2,8-dihydroxyadenine kidney stones? A case series. Urolithiasis 2020; 48:337-344. [PMID: 32399606 DOI: 10.1007/s00240-020-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/04/2020] [Indexed: 11/30/2022]
Abstract
We have recently encountered patients incorrectly diagnosed with adenine phosphoribosyltransferase (APRT) deficiency due to misidentification of kidney stones as 2,8-dihydroxyadenine (DHA) stones. The objective of this study was to examine the accuracy of stone analysis for identification of DHA. Medical records of patients referred to the APRT Deficiency Research Program of the Rare Kidney Stone Consortium in 2010-2018 with a diagnosis of APRT deficiency based on kidney stone analysis were reviewed. The diagnosis was verified by measurement of APRT enzyme activity or genetic testing. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra of pure crystalline DHA and a kidney stone obtained from one of the confirmed APRT deficiency cases were generated. The ATR-FTIR spectrum of the kidney stone matched the crystalline DHA spectrum and was used for comparison with available infrared spectra of stone samples from the patients. Of 17 patients referred, 14 had sufficient data available to be included in the study. In all 14 cases, the stone analysis had been performed by FTIR spectroscopy. The diagnosis of APRT deficiency was confirmed in seven cases and rejected in the remaining seven cases. Comparison of the ATR-FTIR spectrum of the DHA stone with the FTIR spectra from three patients who did not have APRT deficiency showed no indication of DHA as a stone component. Misidentification of DHA as a kidney stone component by clinical laboratories appears common among patients referred to our program. Since current clinical protocols used to interpret infrared spectra for stone analysis cannot be considered reliable for the identification of DHA stones, the diagnosis of APRT deficiency must be confirmed by other methods.
Collapse
Affiliation(s)
- Hrafnhildur L Runolfsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Internal Medicine Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Tzu-Ling Lin
- Department of Renal Medicine, University College London, London, UK
| | - David S Goldfarb
- Nephrology Section, VA New York Harbor Healthcare System, and Division of Nephrology, New York University Langone Medical Center, New York, NY, USA
| | - John A Sayer
- Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Mini Michael
- Renal Section, Department of Pediatrics, Texas Children's Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - David Ketteridge
- Department of Genetics and Molecular Pathology, Women's and Children's Hospital, Adelaide, Australia
| | - Peter R Rich
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Vidar O Edvardsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Children's Medical Center, Landspitali-The National University Hospital of Iceland, Hringbraut, 101, Reykjavik, Iceland.
| | - Runolfur Palsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Division of Nephrology, Landspitali-The National University Hospital of Iceland, Hringbraut, 101, Reykjavik, Iceland.
| |
Collapse
|
7
|
Gopalakrishnan N, Rajasekar D, Dhanapriya J, Dineshkumar T, Sakthirajan R, Balasubramaniyan T, Murugesan V. Unusual cause of crystalline nephropathy. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2019; 29:462-465. [PMID: 29657221 DOI: 10.4103/1319-2442.229280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Adenine phosphoribosyltransferase deficiency is a rare, inherited autosomal recessive disease presenting with 2,8-dihydroxyadenine (DHA) urolithiasis, DHA nephropathy, and chronic kidney disease. The presence of DHA crystals in urine and renal biopsy is pathognomonic of the disease. We report a 23-year-old female with acute renal failure and nephrotic proteinuria. Urinalysis showed reddish brown, round crystals with dark outline, and central spicules consistent with 2,8-DHA crystals. Renal biopsy showed membranous nephropathy and 2,8-DHA nephropathy. Our patient improved with liberal fluid intake, restriction of high adenine content foods, and oral xanthine dehydrogenase inhibitor febuxostat. Early diagnosis and initiation of treatment prevent renal complications.
Collapse
Affiliation(s)
- Natarajan Gopalakrishnan
- Institute of Nephrology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, Tamil Nadu, India
| | - Dhanasekaran Rajasekar
- Institute of Nephrology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, Tamil Nadu, India
| | - Jeyachandran Dhanapriya
- Institute of Nephrology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, Tamil Nadu, India
| | - Thanigachalam Dineshkumar
- Institute of Nephrology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, Tamil Nadu, India
| | - Ramanathan Sakthirajan
- Institute of Nephrology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, Tamil Nadu, India
| | - T Balasubramaniyan
- Institute of Nephrology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, Tamil Nadu, India
| | - V Murugesan
- Institute of Nephrology, Rajiv Gandhi Government General Hospital, Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Acute kidney failure and discrepant values of urinary proteins: When the case is not "crystal clear". Clin Biochem 2019; 67:60-62. [PMID: 30890413 DOI: 10.1016/j.clinbiochem.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/24/2019] [Accepted: 03/16/2019] [Indexed: 11/20/2022]
|
9
|
Jiménez Herrero MC, Petkov Stoyanov V, Gutiérrez Sánchez MJ, Martín Navarro JA. Litiasis due to 2,8-dihydroxyadenine, usefulness of the genetic study. Nefrologia 2019; 39:206-207. [PMID: 30389108 DOI: 10.1016/j.nefro.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/07/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022] Open
|
10
|
Huq A, Nand K, Juneja R, Winship I. APRT deficiency: the need for early diagnosis. BMJ Case Rep 2018; 2018:bcr-2018-225742. [DOI: 10.1136/bcr-2018-225742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder which leads to accumulation of poorly soluble 2,8-dihydroxyadenine in kidneys resulting in nephrolithiasis as well as chronic kidney disease from crystal nephropathy. This report describes a 55-year-old previously fit man who presented with shortness of breath and the investigative pathway that eventually led to a diagnosis of APRT deficiency. Early diagnosis has aided in timely institution of allopurinol, thereby improving his renal function and possibility of weaning off renal replacement therapy. Genetic testing has enabled early identification of other family members at risk and prevention of renal failure by commencing xanthine oxidoreductase (XOR) inhibitors. The issues surrounding kidney donation by a member of this family are also discussed. This case represents the importance of awareness and recognition of the signs and symptoms of this rare condition, complications of which can be easily prevented by early institution of XOR inhibitor therapy.
Collapse
|
11
|
Shu F, Shi Y. Systematic Overview of Solid Particles and Their Host Responses. Front Immunol 2018; 9:1157. [PMID: 29892295 PMCID: PMC5985299 DOI: 10.3389/fimmu.2018.01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Crystalline/particulate substances trigger a plethora of signaling events in host cells. The most prominent consequence is the inflammatory reactions that underlie crystal arthropathies, such as gout and pseudogout. However, their impact on our health was underestimated. Recent work on the role of cholesterol crystal in the development of atherosclerosis and the harm of environmental particulates has set up new frontiers in our defense against their detrimental effects. On the other hand, in the last 100 years, crystalline/particulate substances have been used with increasing frequencies in our daily lives as a part of new industrial manufacturing and engineering. Importantly, they have become a tool in modern medicine, used as vaccine adjuvants and drug delivery vehicles. Their biological effects are also being dissected in great detail, particularly with regard to their inflammatory signaling pathways. Solid structure interaction with host cells is far from being uniform, with outcomes dependent on cell types and chemical/physical properties of the particles involved. In this review, we offer a systematic and broad outlook of this landscape and a sage analysis of the complex nature of this topic.
Collapse
Affiliation(s)
- Fei Shu
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Huyet J, Ozeir M, Burgevin MC, Pinson B, Chesney F, Remy JM, Siddiqi AR, Lupoli R, Pinon G, Saint-Marc C, Gibert JF, Morales R, Ceballos-Picot I, Barouki R, Daignan-Fornier B, Olivier-Bandini A, Augé F, Nioche P. Structural Insights into the Forward and Reverse Enzymatic Reactions in Human Adenine Phosphoribosyltransferase. Cell Chem Biol 2018; 25:666-676.e4. [PMID: 29576532 DOI: 10.1016/j.chembiol.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/05/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
Phosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway. We show that a single oxygen atom from the Tyr105 side chain is responsible for selecting the active conformation of the 12 amino acid long catalytic loop. Using in vitro, cellular, and in crystallo approaches, we demonstrated that Tyr105 is key for the fine-tuning of the kinetic activity efficiencies of the forward and reverse reactions. Together, our results reveal an evolutionary pressure on the strictly conserved Tyr105 and on the dynamic motion of the flexible loop in phosphoribosyltransferases that is essential for purine biosynthesis in cells. These data also provide the framework for designing novel adenine derivatives that could modulate, through hAPRT, diseases-involved cellular pathways.
Collapse
Affiliation(s)
- Jessica Huyet
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France
| | - Mohammad Ozeir
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France
| | | | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | - Françoise Chesney
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Jean-Marc Remy
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Roland Lupoli
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France
| | - Gregory Pinon
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France
| | - Christelle Saint-Marc
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | | | - Renaud Morales
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Irène Ceballos-Picot
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, Paris 75015, France
| | - Robert Barouki
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, Paris 75015, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | | | - Franck Augé
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France.
| | - Pierre Nioche
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France.
| |
Collapse
|
13
|
Doré B, Meria P. A great contributor to the French urological science: Michel Daudon. CR CHIM 2016. [DOI: 10.1016/j.crci.2014.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Bollée G, Cochat P, Daudon M. Recurrence of crystalline nephropathy after kidney transplantation in APRT deficiency and primary hyperoxaluria. Can J Kidney Health Dis 2015; 2:31. [PMID: 26380104 PMCID: PMC4570695 DOI: 10.1186/s40697-015-0069-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/24/2015] [Indexed: 01/25/2023] Open
Abstract
Purpose of review To provide transplant physicians with a summary of the pathogenesis and diagnosis of adenine phosphoribosyl transferase (APRT) deficiency and primary hyperoxaluria and, focussed on kidney transplantation, and to discuss interventions aimed at preventing and treating the recurrence of crystalline nephropathy in renal transplant recipients. Source of information Pubmed literature search. Setting Primary hyperoxaluria and APRT deficiency are rare inborn errors of human metabolism. The hallmark of these diseases is the overproduction and urinary excretion of compounds (2,8 dihydroxyadenine in APRT deficiency, oxalate in primary hyperoxaluria) that form urinary crystals. Although recurrent urolithiasis represents the main clinical feature of these diseases, kidney injury can occur as a result of crystal precipitation within the tubules and interstitium, a condition referred to as crystalline nephropathy. Some patients develop end-stage renal disease (ESRD) and may become candidates for kidney transplantation. Since kidney transplantation does not correct the underlying metabolic defect, transplant recipients have a high risk of recurrence of crystalline nephropathy, which can lead to graft loss. In some instances, the disease remains undiagnosed until after the occurrence of ESRD or even after kidney transplantation. Key messages Patients with APRT deficiency or primary hyperoxaluria may develop ESRD as a result of crystalline nephropathy. In the absence of diagnosis and adequate management, the disease is likely to recur after kidney transplantation, which often leads to rapid loss of renal allograft function. Primary hyperoxaluria, but not APRT deficiency, becomes a systemic disease at low GFR with oxalate deposition leading to malfunction in non-renal organs (systemic oxalosis). We suggest that these diagnoses should be considered in patients with low glomerular filtration rate (GFR) and a history of kidney stones. In APRT deficiency, stones may be confused with uric acid stones, unless specialized techniques are used (infrared spectroscopy or X-ray crystallography for urinary crystals or stone analysis; Fourier transform infrared microscopy for crystals in kidney biopsy). Where these are unavailable, and for confirmation, the diagnosis can be made by measurement of enzyme activity in red blood cell lysates or by genetic testing. In patients with primary hyperoxaluria, levels of urinary and plasma oxalate; and the presence of nearly pure calcium oxalate monohydrate in stones, which often also have an unusually pale colour and unorganized structure, increase diagnostic suspicion. Molecular genetic testing is the criterion measure. Lifelong allopurinol therapy, with high fluid intake if appropriate, may stabilize kidney function in APRT deficiency; if ESRD has occurred or is near, results with kidney transplantation after initiation of allopurinol are excellent. In primary hyperoxaluria recognized before ESRD, pyridoxine treatment and high fluid intake may lead to a substantial decrease in urinary calcium oxalate supersaturation and prevent renal failure. In non-responsive patients or those recognized later in their disease, liver transplantation cures the underlying defect and should be considered when the GFR falls below 30 ml/min/1.73 m2; in those which or near ESRD, liver transplantation and intensive dialysis before kidney transplantation may be considered to reduce the total body oxalate burden before kidney transplantation. Limitations The availability of diagnostic tests varies between countries and centres. Data on long term outcomes after kidney transplantation are limited, especially for APRT deficiency patients. Implications Increasing transplant physicians knowledge of APRT deficiency and primary hyperoxaluria should enable them to implement adequate diagnostic and therapeutic interventions, thereby achieving good outcomes after kidney transplantation.
Collapse
Affiliation(s)
- Guillaume Bollée
- Division of Nephrology and Research Centre of the Centre Hospitalier de l'Université de Montréal and Université de Montréal, Montréal, Québec Canada ; Division of Nephrology, Hôpital Notre Dame, 1560 Sherbrooke Street East, Montreal, QC H2L 4 M1 Canada
| | - Pierre Cochat
- Centre de Référence des Maladies Rénales Rares, Hospices Civils de Lyon and Université Claude-Bernard Lyon 1, Lyon, France
| | - Michel Daudon
- Service d'Explorations Fonctionnelles, AP-HP, Hôpital Tenon, Paris, France
| |
Collapse
|