1
|
Shahabadi N, Ghaffari L, Mardani Z, Shiri F. Interaction studies of water-soluble Zn(II) complex with calf thymus DNA using biophysical and molecular docking methods". NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:493-516. [PMID: 37963106 DOI: 10.1080/15257770.2023.2280001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
The binding between a fluorescent water-soluble Zn(II) complex of {2-[N-(2-hydroxyethylammonioethyl) imino methyl] phenol} and calf thymus DNA (ct-DNA) was investigated using spectroscopic techniques. The complex was prepared and identified by FT-IR, and 1H NMR spectroscopies. The significant changes in the absorption and the circular dichroism spectra of ct-DNA in the presence of the Zn(II) complex implied the interaction between the Zn(II) complex and ct-DNA. Upon addition of ct-DNA, the fluorescence emission intensity of the Zn(II) complex was increased and indicated the interaction between the Zn(II) complex and ct-DNA was occurred. The binding constant values (Kb) resulted from fluorescence spectra clearly showed the Zn(II) complex affinity to ct-DNA. The fluorescence studies also approved the static enhancement mechanism in the Zn(II) complex-DNA complexation process. The thermodynamic profile exhibited the exothermic and spontaneous formation of ct-DNA-Zn(II) complex system via hydrogen bonds and van der Waals forces. The competitive fluorescence investigation by methylene blue (MB), and Hoechst 33258 demonstrated that the Zn(II) complex could replace the DNA-bound Hoechst and bind to the minor groove binding site in ct-DNA. The viscosity changes were negligible, representing the Zn(II) complex binding to DNA via the groove binding mode. Molecular docking simulation affirmed that the Zn(II) complex is located in the minor groove of ct-DNA near the DG12, DA17, DA18, and DG16 nucleobases.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Lida Ghaffari
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Mardani
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Gómez E, Galván-Hidalgo JM, Pérez-Cuéllar G, Huerta-Landa KA, González-Hernández A, Gómez-García O, Andrade-Pavón D, Ramírez-Apan T, Rodríguez Hernández KD, Hernández S, Cano-Sánchez P, Gómez-Velasco H. New Organotin (IV) Compounds Derived from Dehydroacetic Acid and Thiosemicarbazides: Synthesis, Rational Design, Cytotoxic Evaluation, and Molecular Docking Simulation. Bioinorg Chem Appl 2023; 2023:7901843. [PMID: 37920233 PMCID: PMC10620030 DOI: 10.1155/2023/7901843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
Organotin complexes were prepared through a one-pot reaction with three components by reacting thiosemicarbazide or 4-methyl-3-thiosemicarbazide or 4-phenylthiosemicarbazide, dehydroacetic acid (DHA) and dibutyl, diphenyl, dicyclohexyl, and bis[(trimethylsilyl)methyl]tin(IV) oxides; all complexes were characterized by infrared (IR), ultraviolet-visible (UV-vis), mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy. The 119Sn NMR revealed chemical shifts corresponding to a pentacoordinated environment in solution. The X-ray crystallography of the two complexes evidenced the formation of monomeric complexes with a pentacoordinated geometry around tin via three donor atoms from the ligand, the sulfur of the thiol, the nitrogen of the imine group, and the oxygen of the pyran ring. The geometries of the five-coordinated complexes 3a (Bu2SnL3), 3c (Ph2SnL3), and 3d (Cy2SnL3) acid were intermediate between square pyramidal and trigonal bipyramidal, and complex 1a (Bu2SnL1) adopted a bipyramidal trigonal geometry (BPT). The sulforhodamine B assay assessed the cytotoxicity of organotin(IV) complexes against the MDA-MB-231 and MCF-7 (human mammary adenocarcinoma) cell lines and one normal COS-7 (African green monkey kidney fibroblast). The IC50 values evidenced a significant antiproliferative effect on cancer cells; the complexes were more potent than the positive cisplatin control and the corresponding ligands, dehydroacetic acid thiosemicarbazone (L1), dehydroacetic acid-N(4)-methylthiosemicarbazone (L2), and dehydroacetic acid-N(4)-phenylthiosemicarbazone (L3). The IC50 values also indicated that the organotin(IV) complexes were more cytotoxic against the triple-negative breast cell line MDA-MB-231 than MCF-7, inducing significant morphological alterations. The interactions of organotin(IV) 1c (Ph2SnL1), 1d (Cy2SnL1), and 1e (((CH3)3SiCH2)2SnL1) were evaluated with ss-DNA by fluorescence; intensity changes of the fluorescence were indicative of the displacement of ethidium bromide (EB), confirming the interaction of the organotin(IV) complexes with ss-DNA; the results showed a DNA binding affinity. The thermodynamic parameters obtained through isothermal titration calorimetry showed that the interaction of 1c (Ph2SnL1), with ss-ADN, was exothermic. Molecular docking studies also demonstrated that the organotin(IV) complexes were intercalated in DNA by conventional hydrogen bonds, carbon-hydrogen bonds, and π-alkyl interactions. These complexes furthermore showed a greater affinity towards DNA than cisplatin.
Collapse
Affiliation(s)
- Elizabeth Gómez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - José Miguel Galván-Hidalgo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Guillermo Pérez-Cuéllar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Karoline Alondra Huerta-Landa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Arturo González-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Omar Gómez-García
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás 11340, Ciudad de México, Mexico
| | - Dulce Andrade-Pavón
- Departamento Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás 11340, Ciudad de México, Mexico
- Departamento Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Colonia Nueva Industrial Vallejo 07738, Ciudad de México, Mexico
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Karla Daniela Rodríguez Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Simón Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Alcaldía Coyoacán, C. P. 04510, Ciudad de México, Mexico
| |
Collapse
|
3
|
Shahabadi N, Zendehcheshm S, Mahdavi M. Exploring the In‐Vitro Antibacterial Activity and Protein (Human Serum Albumin, Human Hemoglobin and Lysozyme) Interaction of Hexagonal Silver Nanoparticle Obtained from Wood Extract of Wild Cherry Shrub. ChemistrySelect 2023. [DOI: 10.1002/slct.202204672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department, Faculty of Chemistry Razi University Kermanshah Iran
- Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department, Faculty of Chemistry Razi University Kermanshah Iran
- Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Mahdavi
- Inorganic Chemistry Department, Faculty of Chemistry Razi University Kermanshah Iran
| |
Collapse
|
4
|
Momeni BZ, Hosseini SF, Janczak J. New supramolecular architectures of 4′-(4-quinolinyl)-2,2′:6′,2′'-terpyridine based tin complexes: Design, structural variations and thermal properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Shahabadi N, Zendehcheshm S, Khademi F. Green Synthesis, in vitro Cytotoxicity, Antioxidant Activity and Interaction Studies of CuO Nanoparticles with DNA, Serum Albumin, Hemoglobin and Lysozyme. ChemistrySelect 2022. [DOI: 10.1002/slct.202202916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nahid Shahabadi
- Inorganic Chemistry Department Faculty of Chemistry Razi University Kermanshah Iran
| | - Saba Zendehcheshm
- Inorganic Chemistry Department Faculty of Chemistry Razi University Kermanshah Iran
| | - Fatemeh Khademi
- Medical Biology Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
6
|
Shahabadi N, Zendehcheshm S, Khademi F. Exploring the ct-DNA and plasmid DNA binding affinity of the biogenic synthesized Chloroxine-conjugated silver nanoflowers: Spectroscopic and gel electrophoresis methods. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Shahabadi N, Akbari A, Karampour F, Falsafi M, Zendehcheshm S. In vitro cytotoxicity, antibacterial activity and HSA and ct-DNA interaction studies of chlorogenic acid loaded on γ-Fe 2O 3@SiO 2 as new nanoparticles. J Biomol Struct Dyn 2022; 41:2300-2320. [PMID: 35120416 DOI: 10.1080/07391102.2022.2030799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, nanoparticles with both anticancer and antibacterial features were synthesized through loading chlorogenic acid (CGA) of essential oils on magnetic nanoparticles (MNPs). Characterization of γ-Fe2O3@SiO2-CGA MNPs was performed using Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) that show effective coating of the MNPs with SiO2 and CGA ligand and spherical shape of the nanoparticles with a mean diameter of 16 nm, respectively. The cytotoxicity study demonstrated that γ-Fe2O3@SiO2-CGA MNPs had fewer toxic effects on normal cells (Huvec) than on cancerous cells (U-87 MG, A-2780 and A-549), and could be a new potential candidate for use in biological and pharmaceutical applications. The interaction of calf thymus deoxyribonucleic acid (ct-DNA) with γ-Fe2O3@SiO2-CGA MNPs indicated that the anticancer activity might be associated with the DNA binding properties of γ-Fe2O3@SiO2-CGA MNPs. Moreover, the interaction of γ-Fe2O3@SiO2-CGA MNPs with human serum albumin (HSA) suggests that the native conformation of HSA was preserved at the level of secondary structure, indicating that the γ-Fe2O3@SiO2-CGA MNPs do not show any cytotoxicity effect when they are injected into the blood. Antibacterial tests were performed and represented γ-Fe2O3@SiO2-CGA MNPs attained better antibacterial function than CGA as free.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Akbari
- Chemistry Department, Payame Noor University, Tehran, Iran
| | | | | | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Xu F, Chen J, Lu C, Cao H, Gu W, Gu W, Zeng L. New insights into the anti-hepatoma mechanism of Alisol G-metal ions complexes based on c-myc DNA. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Sharma S, Agnihotri N, Kumar K, Sihag S, Randhawa V, Kaur R, Singh R, Kaur V. Glutamine conjugated organotin(IV) Schiff base compounds: Synthesis, structure, and anticancer properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shagun Sharma
- Department of Biochemistry Panjab University Chandigarh India
| | | | - Keshav Kumar
- Department of Chemistry Panjab University Chandigarh India
| | - Swati Sihag
- Department cum National Center for Human Genome Studies and Research Panjab University Chandigarh India
| | - Vinay Randhawa
- Department of Biochemistry Panjab University Chandigarh India
| | - Ramandeep Kaur
- Department cum National Center for Human Genome Studies and Research Panjab University Chandigarh India
| | | | - Varinder Kaur
- Department of Chemistry Panjab University Chandigarh India
| |
Collapse
|
10
|
Dimethyltin(IV) Coordination Polymers Featuring the Versatile Ligand of 2,2′-Bipyrimidine: A Multi-NMR, Hirshfeld Surface Analysis Study and Thermal Properties. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Guo H, Xie J, Liao T, Tuo X. Exploring the binding mode of donepezil with calf thymus DNA using spectroscopic and molecular docking methods. LUMINESCENCE 2020; 36:35-44. [PMID: 32614132 DOI: 10.1002/bio.3911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Donepezil (DNP) is one of approved drugs to treat Alzheimer's disease (AD). However, the potential effect of DNP on DNA is still unclear. Therefore, the interaction of DNP with calf thymus DNA (DNA) was studied in vitro using spectroscopic and molecular docking methods. Steady-state and transient fluorescence experiments showed that there was a clear binding interaction between DNP and DNA, resulting from DNP fluorescence being quenched using DNA. DNP and DNA have one binding site between them, and the binding constant (Kb ) was 0.78 × 104 L·mol-1 at 298 K. In this binding process, hydrophobic force was the main interaction force, because enthalpy change (ΔH) and entropy change (ΔS) of DNP-DNA were 67.92 kJ·mol-1 and 302.96 J·mol-1 ·K-1 , respectively. DNP bound to DNA in a groove-binding mode, which was verified using a competition displacement study and other typical spectroscopic methods. Fourier transform infrared (FTIR) spectrum results showed that DNP interacted with guanine (G) and cytosine (C) bases of DNA. The molecular docking results further supported the results of spectroscopic experiments, and suggested that both Pi-Sigma force and Pi-Alkyl force were the major hydrophobic force functioning between DNP and DNA.
Collapse
Affiliation(s)
- Hui Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Jiawen Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Tancong Liao
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Shahabadi N, Mahdavi M, Momeni BZ. Multispectroscopic analysis, atomic force microscopy, molecular docking and molecular dynamic simulation studies of the interaction between [SnMe 2Cl 2(Me 2phen)] complex and ct-DNA in the presence of glucose. J Biomol Struct Dyn 2020; 39:5068-5082. [PMID: 32588754 DOI: 10.1080/07391102.2020.1784793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, the spectroscopic methods (UV-vis, fluorimetric), Atomic force microscopy, and computational studies (molecular docking and molecular dynamic simulation) were used to investigate the interaction of [SnMe2Cl2(Me2phen)] complex with CT-DNA in the presence of glucose. The results showed the complex in the medium containing glucose has less effect on calf thymus DNA (ct-DNA) than the medium without glucose. Cytotoxicity of [SnMe2Cl2(Me2phen)] complex on MCF-7 cells was examined and showed Sn(IV) complex possesses potential cytotoxicity against this cell line. Molecular docking study showed that Sn(IV) complex interacts with DNA by groove binding mode. Radius of gyration (Rg) was smaller upon binding of the Sn(IV) complex suggesting a more compact structure of DNA in the presence of Sn(IV) complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdavi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Badri Z Momeni
- Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
13
|
Shahabadi N, Zendehcheshm S, Momeni BZ, Abbasi R. Antiproliferative activity and human serum albumin binding propensity of [SnMe2Cl2(bu2bpy)]: multi-spectroscopic analysis, atomic force microscopy, and computational studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1775821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Badri Z Momeni
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| | - Reyhaneh Abbasi
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Momeni BZ, Fathi N, Abbasi R, Janczak J. Exploiting the versatility of pyridyl ligands for the preparation of diorganotin (IV) adducts: spectral, crystallographic and Hirshfeld surface analysis studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Badri Z. Momeni
- Faculty of ChemistryK.N. Toosi University of Technology P.O. Box 16315‐1618 Tehran 15418 Iran
| | - Nastaran Fathi
- Faculty of ChemistryK.N. Toosi University of Technology P.O. Box 16315‐1618 Tehran 15418 Iran
| | - Reyhaneh Abbasi
- Faculty of ChemistryK.N. Toosi University of Technology P.O. Box 16315‐1618 Tehran 15418 Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure ResearchPolish Academy of Sciences P.O. Box 1410 50‐950 Wrocław Poland
| |
Collapse
|