1
|
Miele D, Xia X, Catenacci L, Sorrenti M, Rossi S, Sandri G, Ferrari F, Rossi JJ, Bonferoni MC. Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System. Pharmaceutics 2021; 13:1716. [PMID: 34684009 PMCID: PMC8539707 DOI: 10.3390/pharmaceutics13101716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Oligonucleotide therapeutics such as miRNAs and siRNAs represent a class of molecules developed to modulate gene expression by interfering with ribonucleic acids (RNAs) and protein synthesis. These molecules are characterized by strong instability and easy degradation due to nuclease enzymes. To avoid these drawbacks and ensure efficient delivery to target cells, viral and non-viral vectors are the two main approaches currently employed. Viral vectors are one of the major vehicles in gene therapy; however, the potent immunogenicity and the insertional mutagenesis is a potential issue for the patient. Non-viral vectors, such as polymeric nanocarriers, provide a safer and more efficient delivery of RNA-interfering molecules. The aim of this work is to employ PLGA core nanoparticles shell-coated with chitosan oleate as siRNA carriers. An siRNA targeted on HIV-1, directed against the viral Tat/Rev transcripts was employed as a model. The ionic interaction between the oligonucleotide's moieties, negatively charged, and the positive surface charges of the chitosan shell was exploited to associate siRNA and nanoparticles. Non-covalent bonds can protect siRNA from nuclease degradation and guarantee a good cell internalization and a fast release of the siRNA into the cytosolic portion, allowing its easy activation.
Collapse
Affiliation(s)
- Dalila Miele
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1218 Fifth Avenue, Duarte, CA 91010, USA;
| | - Laura Catenacci
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Milena Sorrenti
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Silvia Rossi
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Giuseppina Sandri
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Franca Ferrari
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1218 Fifth Avenue, Duarte, CA 91010, USA;
| | - Maria Cristina Bonferoni
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| |
Collapse
|
2
|
Koizumi M, Hirota Y, Nakayama M, Tamura M, Obuchi W. RNA interference activity of single-stranded oligonucleotides linked between the passenger strand and the guide strand with an aryl phosphate linker. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:647-664. [PMID: 34047248 DOI: 10.1080/15257770.2021.1927077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Recently, we demonstrated that asymmetrical 18 base-paired double-strand oligonucleotides comprised of alternately combined 2'-O-methyl RNA and DNA, termed MED-siRNAs, show high RNase resistance, efficient cleavage of target mRNA, and the subsequent reduction of target protein expression. The 5'-terminal phosphate group and the 3'-overhang of the guide strand were required to fully activate the RNAi activity of MED-siRNAs. Here, we evaluated MED-siRNAs modified with aryl phosphate groups at the 5'-end of the guide strand. The 5'-aryl phosphorylated MED-siRNAs showed highly efficient reduction of target protein expression comparable to 5'-phosphorylated MED-siRNAs. Moreover, 5'-aryl phosphorylated MED-siRNAs linked between the aryl phosphate group at the 5'-end of the guide strand and the hydroxyl group at the 3'-end of the passenger strand with alkyl amide linkers or peptides (e.g., DL-Ser-L-Ala-L-Tyr), resulted in single-stranded MED-siRNAs with a highly efficient cleavage activity of target mRNA with binding to Argonaute 2 via an RNA interference mechanism. These linker techniques could also be used to create siRNAs composed of naturally-occurring molecules such as amino acids. These findings suggest the possibility of using these single-stranded MED-siRNAs as siRNA reagents.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1927077 .
Collapse
Affiliation(s)
- Makoto Koizumi
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Yasuhide Hirota
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Makiko Nakayama
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Masakazu Tamura
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| | - Wataru Obuchi
- R&D and Biologics Divisions, Daiichi Sankyo Co., Ltd, Shinagawa, Tokyo, Japan
| |
Collapse
|