1
|
Skalny AV, Aschner M, Zhang F, Guo X, Buha Djordevic A, Sotnikova TI, Korobeinikova TV, Domingo JL, Farsky SHP, Tinkov AA. Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis. Arch Toxicol 2024; 98:2763-2796. [PMID: 38758407 DOI: 10.1007/s00204-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The objective of the present study was to review the molecular mechanisms of the adverse effects of environmental pollutants on chondrocytes and extracellular matrix (ECM). Existing data demonstrate that both heavy metals, including cadmium (Cd), lead (Pb), and arsenic (As), as well as organic pollutants, including polychlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCB), bisphenol A, phthalates, polycyclic aromatic hydrocarbons (PAH), pesticides, and certain other organic pollutants that target cartilage ontogeny and functioning. Overall, environmental pollutants reduce chondrocyte viability through the induction apoptosis, senescence, and inflammatory response, resulting in cell death and impaired ECM production. The effects of organic pollutants on chondrocyte development and viability were shown to be mediated by binding to the aryl hydrocarbon receptor (AhR) signaling and modulation of non-coding RNA expression. Adverse effects of pollutant exposures were observed in articular and growth plate chondrocytes. These mechanisms also damage chondrocyte precursors and subsequently hinder cartilage development. In addition, pollutant exposure was shown to impair chondrogenesis by inhibiting the expression of Sox9 and other regulators. Along with altered Runx2 signaling, these effects also contribute to impaired chondrocyte hypertrophy and chondrocyte-to-osteoblast trans-differentiation, resulting in altered endochondral ossification. Several organic pollutants including PCDD/Fs, PCBs and PAHs, were shown to induce transgenerational adverse effects on cartilage development and the resulting skeletal deformities. Despite of epidemiological evidence linking human environmental pollutant exposure to osteoarthritis or other cartilage pathologies, the data on the molecular mechanisms of adverse effects of environmental pollutant exposure on cartilage tissue were obtained from studies in laboratory rodents, fish, or cell cultures and should be carefully extrapolated to humans, although they clearly demonstrate that cartilage should be considered a putative target for environmental pollutant toxicity.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Tatiana I Sotnikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
- City Clinical Hospital N. a. S.P. Botkin of the Moscow City Health Department, 125284, Moscow, Russia
| | - Tatiana V Korobeinikova
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, 4320, Reus, Catalonia, Spain
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, 005508-000, Brazil
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
2
|
Zhang YJ, Guo JL, Xue JC, Bai CL, Guo Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118106. [PMID: 34520948 DOI: 10.1016/j.envpol.2021.118106] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are plasticizers in various products and regarded as endocrine disruptors due to their anti-androgen effects. Environmental occurrence and toxicities of parent phthalates have been widely reported, while the current state of knowledge on their metabolites is rarely summarized. Based on the available literature, the present review mainly aims to 1) characterize the potential metabolites of phthalates (mPAEs) using the pharmacokinetics evidences acquired via animal or human models; 2) examine the molecular and cellular mechanism involved in toxicity for mPAEs; 3) investigate the exposure levels of mPAEs in different human specimens (e.g., urine, blood, seminal fluid, breast milk, amniotic fluid and others) across the globe; 4) discuss the models and related parameters for phthalate exposure assessment. We suggest there is subtle difference in toxic mechanisms for mPAEs compared to their parent phthalates due to their alternative chemical structures. Human monitoring studies performed in Asia, America and Europe have provided the population exposure baseline levels for typical phthalates in different regions. Urine is the preferred matrix than other specimens for phthalate exposure study. Among ten urinary mPAEs, the largest proportions of di-(2-ethylhexyl) phthalate (DEHP) metabolites (40%), monoethyl phthalate (mEP) (43%) and DEHP metabolites/mEP (both 29%) were observed in Asia, America and Europe respectively, and mono-5-carboxy-2-ethypentyl phthalate was the most abundant compounds among DEHP metabolites. Daily intakes of phthalates can be accurately calculated via urinary mPAEs if the proper exposure parameters were determined. Further work should focus on combining epidemiological and biological evidences to establish links between phthalates exposure and biological phenotypes. More accurate molar fractions (FUE) of the urinary excreted monoester related to the ingested diesters should be collected in epidemiological or pharmacokinetic studies for different population.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jia-Liang Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jing-Chuan Xue
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Sedha S, Lee H, Singh S, Kumar S, Jain S, Ahmad A, Bin Jardan YA, Sonwal S, Shukla S, Simal-Gandara J, Xiao J, Huh YS, Han YK, Bajpai VK. Reproductive toxic potential of phthalate compounds - State of art review. Pharmacol Res 2021; 167:105536. [PMID: 33677105 DOI: 10.1016/j.phrs.2021.105536] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
Phthalates are pervasive compounds, and due to the ubiquitous usage of phthalates, humans or even children are widely exposed to them. Since phthalates are not chemically bound to the plastic matrix, they can easily leach out to contaminate the peripheral environment. Various animal and human studies have raised vital health concern including developmental and reproductive toxicity of phthalate exposure. The present review is based upon the available literature on phthalates with respect to their reproductive toxic potential. Common reproductive effects such as declined fertility, reduced testis weight, variations in accessory sex organs and several female reproductive disorders appeared to be largely associated with the transitional phthalates. Among the higher molecular weight phthalates (≥ C7), di-isononyl phthalate (DINP) produces some minor effects on development of male reproductive tract and among low molecular weight phthalates (≤C3), di-methyl (DMP) and di-isobutyl (DIBP) phthalate produce some adverse effects on male reproductive system. Whereas transitional phthalates such as di-butyl phthalate, benzyl butyl phthalate, and di-(2-ethylhexyl) phthalate have shown adverse effects on female reproductive system. Owing to these, non-toxic alternatives to phthalates may be developed and use of phthalates could be rationalized as an important issue where human reproduction system is involved. Though, more epidemiological studies are needed to substantiate the reported findings on phthalates.
Collapse
Affiliation(s)
- Sapna Sedha
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Siddhartha Singh
- Government Girls P.G. College for Excellence, Sagar 470002, MP, India
| | - Sunil Kumar
- National Institute of Occupational Health - ICMR, Meghaninagar, Ahmedabad 380016, Gujarat, India
| | - Subodh Jain
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| |
Collapse
|
4
|
Rasmussen LM, Sen N, Vera JC, Liu X, Craig ZR. Effects of in vitro exposure to dibutyl phthalate, mono-butyl phthalate, and acetyl tributyl citrate on ovarian antral follicle growth and viability. Biol Reprod 2017; 96:1105-1117. [PMID: 28486587 PMCID: PMC6373836 DOI: 10.1095/biolreprod.116.144691] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 11/01/2022] Open
Abstract
Dibutyl phthalate (DBP) is present in consumer products and the coating of some oral medications. Acetyl tributyl citrate (ATBC) has been proposed as an alternative to DBP because DBP causes endocrine disruption in animal models. Following ingestion, DBP is converted to its main metabolite mono-butyl phthalate (MBP) which has been detected in >90% of human follicular fluid samples. Previous studies show that DBP reduces the number of antral follicles present in the ovaries of mice. Thus, this study was designed to evaluate the effects of DBP, MBP, and ATBC on in vitro growth and viability of mouse ovarian antral follicles. Antral follicles were isolated from CD-1 females (PND32-37) and treated with vehicle, DBP, MBP, or ATBC (starting at 0.001 and up to 1000 μg/ml for DBP; 24-72 h). Follicle diameter, ATP production, qPCR, and TUNEL were used to measure follicle growth, viability, cell cycle and apoptosis gene expression, and cell death-associated DNA fragmentation, respectively. While MBP did not cause toxicity, DBP exposure at ≥10 μg/ml resulted in growth inhibition followed by cytoxicity at ≥500 μg/ml. ATBC increased the number of nongrowing follicles at 0.01 μg/ml and did not affect ATP production, but increased TUNEL positive area in treated follicles. Gene expression results suggest that cytotoxicity in DBP-treated follicles occurs via activation of cell cycle arrest prior to follicular death. These findings suggest that concentrations of DBP ≥10 μg/ml are detrimental to antral follicles and that ATBC should be examined further as it may disrupt antral follicle function at low concentrations.
Collapse
Affiliation(s)
- Lindsay M. Rasmussen
- School of Animal and Comparative Biomedical Sciences, University of Arizona,
Tucson, Arizona, USA
| | - Nivedita Sen
- School of Animal and Comparative Biomedical Sciences, University of Arizona,
Tucson, Arizona, USA
| | - Jahaira C. Vera
- School of Animal and Comparative Biomedical Sciences, University of Arizona,
Tucson, Arizona, USA
| | - Xiaosong Liu
- School of Animal and Comparative Biomedical Sciences, University of Arizona,
Tucson, Arizona, USA
| | - Zelieann R. Craig
- School of Animal and Comparative Biomedical Sciences, University of Arizona,
Tucson, Arizona, USA
| |
Collapse
|
5
|
|
6
|
Alija AJ, Bajraktari ID, Bresgen N, Bojaxhi E, Krenn M, Asllani F, Eckl PM. Cyto- and genotoxic potential of water samples from polluted areas in Kosovo. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:501. [PMID: 27488194 DOI: 10.1007/s10661-016-5447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Reports on the state of the environment in Kosovo have emphasized that river and ground water quality is affected by pollution from untreated urban water as well as the waste water from the industry. One of the main contributors to this pollution is located in Obiliq (coal power plants). Prishtina-the capital city of Kosovo-is heavily influenced too. Furthermore, the pollutants combined together with those from heavy traffic are dissolved in Prishtina runoff water, which is discharged into the creek entering the river Sitnica together with urban waste water. The available data show the complex pollution with excessive quantities of nitrites, suspended materials, organic compounds, detergents, heavy metals, polychlorinated biphenyls, etc. In this study, the cytotoxic and genotoxic potential of water samples taken at these sites was tested in primary rat hepatocytes. The results obtained indicate that water samples collected in Prishtina and Obiliq had a significant cytotoxic potential in primary rat hepatocyte cultures even when diluted to 1 %. The increased cytotoxicity, however, was not accompanied by an increased genotoxicity as measured by the percentage of micronucleated cells. Further investigations addressing the chemical composition of the samples and the identification of the toxicants responsible for the cytotoxic effects found will be carried out in a next step.
Collapse
Affiliation(s)
- Avdulla J Alija
- Department of Biology, University of Prishtina, Xhorxh Bush, n.n, 10000, Prishtina, Kosova.
| | - Ismet D Bajraktari
- Department of Biology, University of Prishtina, Xhorxh Bush, n.n, 10000, Prishtina, Kosova
| | - Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, A-5020, Salzburg, Austria
| | - Ekramije Bojaxhi
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, A-5020, Salzburg, Austria
| | - Margit Krenn
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, A-5020, Salzburg, Austria
| | - Fisnik Asllani
- Department of Biology, University of Prishtina, Xhorxh Bush, n.n, 10000, Prishtina, Kosova
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, A-5020, Salzburg, Austria
| |
Collapse
|
7
|
Wang XJ, Xiong GP, Luo XM, Huang SZ, Liu J, Huang XL, Xie YZ, Lin WP. Dibutyl Phthalate Inhibits the Effects of Follicle-Stimulating Hormone on Rat Granulosa Cells Through Down-Regulation of Follicle-Stimulating Hormone Receptor. Biol Reprod 2016; 94:144. [PMID: 26962121 DOI: 10.1095/biolreprod.115.136002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/07/2016] [Indexed: 11/01/2022] Open
Abstract
Dibutyl phthalate (DBP) is used worldwide in solvents and plasticizers. The cytotoxicity and potential tumorigenic effect of DBP have been reported. DBP has also been shown to impact reproductive function. In this study, to further evaluate the effects of DBP on granulosa cells (GCs), we treated rat GCs in vitro with DBP before evaluation of the biological alterations of these GCs. We found that DBP did not induce significant GC death at the tested concentrations. However, follicle-stimulating hormone (FSH)-induced KIT ligand (KITLG) expression in GCs was significantly reduced at both mRNA and protein levels by DBP treatment in a dose-dependent manner. The down-regulation of KITLG was due to the down-regulation of expression of FSH receptor (FSHR) in GCs. Down-regulation of FSHR impaired FSH-induced intracellular signaling in GCs, demonstrated by decreased phosphorylation of AKT and mechanistic target of rapamycin (mTOR). Furthermore, DBP treatment also reduced FSH-induced expression of hypoxia-inducible factor 1-alpha (HIF1A), which is an important signaling component for KITLG expression. Other FSH-induced biological effects, such as production of estradiol and progesterone, as well as GC proliferation, were also suppressed by DBP. Therefore, our study discovered a unique mechanism underlying the toxicity of DBP on GCs. These findings may initiate the development of novel therapeutic interventions for DBP-induced damage to GCs.
Collapse
Affiliation(s)
- Xue-Jin Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Gong-Peng Xiong
- Department of Hepatobiliary Surgery, Liver Disease Center of Xiamen Traditional Hospital affiliated to Fujian University of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Xiang-Min Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Su-Zhen Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jin Liu
- Public Health Institute of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiao-Lan Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yuan-Zhi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wen-Ping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
8
|
Ferguson KK, McElrath TF, Chen YH, Mukherjee B, Meeker JD. Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:210-6. [PMID: 25402001 PMCID: PMC4348741 DOI: 10.1289/ehp.1307996] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 11/11/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phthalate exposure occurs readily in the environment and has been associated with an array of health end points, including adverse birth outcomes. Some of these may be mediated by oxidative stress, a proposed mechanism for phthalate action. OBJECTIVES In the present study, we explored the associations between phthalate metabolites and biomarkers of oxidative stress measured in urine samples from multiple time points during pregnancy. METHODS Women were participants in a nested case-control study of preterm birth (n = 130 cases, n = 352 controls). Each was recruited early in pregnancy and followed until delivery, providing urine samples at up to four visits. Nine phthalate metabolites were measured to assess exposure, and 8-hydroxydeoxyguanosine and 8-isoprostane were also measured in urine as markers of oxidative stress. Associations were assessed using linear mixed models to account for intraindividual correlation, with inverse selection probability weightings based on case status to allow for greater generalizability. RESULTS Interquartile range increases in phthalate metabolites were associated with significantly higher concentrations of both biomarkers. Estimated differences were greater in association with monobenzyl phthalate (MBzP), mono-n-butyl phthalate (MBP), and monoisobutyl phthalate (MiBP), compared with di(2-ethylhexyl) phthalate (DEHP) metabolites. CONCLUSIONS Urinary phthalate metabolites were associated with increased oxidative stress biomarkers in our study population of pregnant women. These relationships may be particularly relevant to the study of birth outcomes linked to phthalate exposure. Although replication is necessary in other populations, these results may also be of great importance for a range of other health outcomes associated with phthalates.
Collapse
Affiliation(s)
- Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
9
|
Shono T, Taguchi T. Short-time exposure to mono-n-butyl phthalate (MBP)-induced oxidative stress associated with DNA damage and the atrophy of the testis in pubertal rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3187-3190. [PMID: 24310901 DOI: 10.1007/s11356-013-2332-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Phthalates are widely used as plasticizer in various consumer domestic products and are known to disturb the male reproductive function in rodents. This study investigated the involvement of oxidative stress and the atrophy of the testes in pubertal rats exposed to mono-n-butyl phthalate (MBP). Four-week-old pubertal male rats were separated into three groups. In group I, 21 rats were fed rat chow containing 2 % MBP for 3 days. In group II, 21 rats were fed rat chow containing 2 % MBP for 3 days and antioxidant vitamins C (250 mg/kg/day) and E (50 mg/kg/day) were injected daily. In group III, 21 rats were fed standard rat chow and used as controls. After 3 days, each testis was weighed and the germ cell development was evaluated using the Johnsen score. The urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were measured as a biological marker of oxidative DNA damage. The mean testis weight was significantly lower for group I than groups II or III (p < 0.05). The mean Johnsen score was significantly lower for group I than for groups II or III (p < 0.05). Urinary 8-OHdG concentrations were higher in group I than in groups II or III. Short-time exposure to MBP may therefore induce oxidative DNA damage in rat testes, while antioxidant vitamins administered during exposure may protect against this stress.
Collapse
Affiliation(s)
- Takeshi Shono
- Department of Pediatric Surgery, Saga Medical Center Koseikan, 400, Nakahara, Kasemachi, Saga, 840-8571, Japan,
| | | |
Collapse
|
10
|
Rajesh P, Balasubramanian K. Di(2-ethylhexyl)phthalate exposure impairs insulin receptor and glucose transporter 4 gene expression in L6 myotubes. Hum Exp Toxicol 2013; 33:685-700. [DOI: 10.1177/0960327113506238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Di(2-ethyl hexyl)-phthalate (DEHP) is an endocrine disrupter and is the most abundantly used phthalate derivative, which is suspected to be an inevitable environmental exposure contributing to the increasing incidence of type-2 diabetes in humans. Therefore, the present study was designed to address the dose-dependent effects of DEHP on insulin signaling molecules in L6 myotubes. L6 myotubes were exposed to different concentrations (25, 50, and 100 μM) of DEHP for 24 h. At the end of exposure, cells were utilized for assessing various parameters. Insulin receptor and glucose transporter4 (GLUT4) gene expression, insulin receptor protein concentration, glucose uptake and oxidation, and enzymatic and nonenzymatic antioxidants were significantly reduced, but glutamine fructose-6-phosphate amidotransferase, nitric oxide, lipid peroxidation, and reactive oxygen species levels were elevated in a dose-dependent manner in L6 myotubes exposed to DEHP. The present study in turn shows the direct adverse effect of DEHP on the expression of insulin receptor and GLUT4 gene, glucose uptake, and oxidation in L6 myotubes suggesting that DEHP exposure may have a negative influence on insulin signaling.
Collapse
Affiliation(s)
- P Rajesh
- Department of Endocrinology, Dr A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| | - K Balasubramanian
- Department of Endocrinology, Dr A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| |
Collapse
|
11
|
Chaves CDAL, Machado AL, Carlos IZ, Giampaolo ET, Pavarina AC, Vergani CE. Cytotoxicity of monomers, plasticizer and degradation by-products released from dental hard chairside reline resins. Dent Mater 2010; 26:1017-23. [DOI: 10.1016/j.dental.2010.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
12
|
Bettencourt AF, Neves CB, de Almeida MS, Pinheiro LM, Oliveira SAE, Lopes LP, Castro MF. Biodegradation of acrylic based resins: A review. Dent Mater 2010; 26:e171-80. [DOI: 10.1016/j.dental.2010.01.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/29/2009] [Accepted: 01/13/2010] [Indexed: 11/25/2022]
|
13
|
Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, Hernandez-Avila M, Loch-Caruso R, Téllez-Rojo MM. Urinary phthalate metabolites in relation to preterm birth in Mexico city. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1587-92. [PMID: 20019910 PMCID: PMC2790514 DOI: 10.1289/ehp.0800522] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 06/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rates of preterm birth have been rising over the past several decades. Factors contributing to this trend remain largely unclear, and exposure to environmental contaminants may play a role. OBJECTIVE We investigated the relationship between phthalate exposure and preterm birth. METHODS Within a large Mexican birth cohort study, we compared third-trimester urinary phthalate metabolite concentrations in 30 women who delivered preterm (< 37 weeks of gestation) with those of 30 controls (> or = 37 weeks of gestation). RESULTS Concentrations of most of the metabolites were similar to those reported among U.S. females, although in the present study mono-n-butyl phthalate (MBP) concentrations were higher and monobenzyl phthalate (MBzP) concentrations lower. In a crude comparison before correcting for urinary dilution, geometric mean urinary concentrations were higher for the phthalate metabolites MBP, MBzP, mono(3-carboxylpropyl) phthalate, and four metabolites of di(2-ethyl-hexyl) phthalate among women who subsequently delivered preterm. These differences remained, but were somewhat lessened, after correction by specific gravity or creatinine. In multivariate logistic regression analysis adjusted for potential confounders, elevated odds of having phthalate metabolite concentrations above the median level were found. CONCLUSIONS We found that phthalate exposure is prevalent among this group of pregnant women in Mexico and that some phthalates may be associated with preterm birth.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Trably E, Batstone DJ, Christensen N, Patureau D, Schmidt JE. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester. FEMS Microbiol Ecol 2008; 66:472-83. [DOI: 10.1111/j.1574-6941.2008.00570.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
15
|
Lee E, Kim HJ, Im JY, Kim J, Park H, Ryu JY, Lee J, Shim KA, Jung KK, Han SY, Lee BM, Kim SH, Kim HS. Hypothyroidism protects di(n-butyl) phthalate-induced reproductive organs damage in Sprague-Dawley male rats. J Toxicol Sci 2008; 33:299-306. [PMID: 18670161 DOI: 10.2131/jts.33.299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This study examined the deleterious effects of di(n-butyl) phthalate (DBP) on the male reproductive organs in hypothyroid rats. Hypothyroidism was induced in prepubertal male rats (28 days of age) by an intraperitonial (i.p.) injection of 10 mg/kg/day propylthiouracil (PTU) for 30 days. DBP (100 and 500 mg/kg/day) was administered by oral gavages to the intact or hypothyroid rats for 30 days. The body weight of the PTU-treated rats was significantly lower than the control group. The total triiodothyronine (T3) and thyroxine (T4) serum level was lower, and the thyroid-stimulating hormone (TSH) level was higher in the hypothyroid rats than in the control rats. The DBP treatment rats showed significantly lower testes, epididymides, seminal vesicles, and ventral prostate weights than the untreated rats. The hypothyroid rats had significantly higher thyroid weights and lower adrenal glands weights than the control rats. The histomorphological examination showed diffused Leydig cells hyperplasias and germ cells loss in the DBP (500 mg/kg)-treated rats, whereas these effects were mild in the DBP-treated hypothyroid rats. The serum levels of monobutyl phthalate (MBP) were significantly lower in PTU-induced hypothyroid rats than in the DBP-treated rats. This data suggests that the hypothyroid status might offer some protection from male reproductive organ toxicity caused by a disturbance in the metabolic activation of the parent compound, DBP.
Collapse
Affiliation(s)
- Ena Lee
- College of Pharmacy, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wenzel A, Franz C, Breous E, Loos U. Modulation of iodide uptake by dialkyl phthalate plasticisers in FRTL-5 rat thyroid follicular cells. Mol Cell Endocrinol 2005; 244:63-71. [PMID: 16289305 DOI: 10.1016/j.mce.2005.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 02/12/2005] [Indexed: 10/25/2022]
Abstract
Plasticisers imparting flexibility to plastics are man-made chemicals abundantly present in the environment. Effects of six different dialkyl phthalates were studied in vitro in the rat thyroid cell line FRTL-5 on their ability to modulate basal iodide uptake mediated by the sodium/iodide symporter (NIS). The present study shows that diisodecyl phthalate (DIDP), dioctyl phthalate (DOP), diisononyl phthalate (DINP) and bis (2-ethylhexyl) phthalate (DEHP) significantly enhance iodide uptake when concentrations in the magnitude between 10(-4) M and 10(-3) M were applied. In this range, these phthalates do not assess toxicity on the cells. Specific inhibiton of NIS demonstrated that enhancement of iodide uptake is due to NIS. In contrast, benzyl butyl phthalate (BBP) also augments iodide uptake at 1mM but this concentration has just exceeded the toxicity threshold and dibutyl phthalate (DBP), the most toxic compound did not modulate iodide uptake at any concentration applied. As we can deduce from our results, plasticisers are capable of significantly modulating NIS mediated iodide uptake activity.
Collapse
Affiliation(s)
- A Wenzel
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strasse 8, Germany
| | | | | | | |
Collapse
|
17
|
Gehin A, Guillaume YC, Millet J, Guyon C, Nicod L. Vitamins C and E reverse effect of herbicide-induced toxicity on human epidermal cells HaCaT: a biochemometric approach. Int J Pharm 2004; 288:219-26. [PMID: 15620861 DOI: 10.1016/j.ijpharm.2004.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 09/22/2004] [Accepted: 09/25/2004] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate and compare the cytotoxicity of glyphosate alone or included in Roundup 3 plus modulated by the cytoprotective effects of additional antioxidants such as Vitamin C and Vitamin E on the human keratinocytes cell line HaCaT. An experimental design which allows to minimize the number of experiments was carried out to determine the optimal conditions for cytoprotection against herbicide-induced toxicity. It was shown that HaCaT cell line provides a useful model to study components with toxicity or antioxidant activity. Our results indicated that (i) glyphosate-based formulations can be responsible for oxidative damage to human epidermal cells, (ii) antioxidant compounds should be associated to herbicide formulations to decrease their deleterious effects on human skin. The use of an experimental design connected with the simplex method can be consider to be a fast technique to classify, with a limited number of experiments, the respective role of five parameters in the in vitro cytoprotection by antioxidants of herbicide-induced toxicity.
Collapse
Affiliation(s)
- Audrey Gehin
- Equipe des Sciences Séparatives et Biopharmaceutiques (EA 482), UFR Médecine--Pharmacie, Place Saint Jacques, F-25030 Besançon Cedex, France
| | | | | | | | | |
Collapse
|