1
|
Hou S, Wang C, Ma X, Zhao J, Wang J, Fang Y, Liu H, Ding H, Guo J, Lu W. Methylmercury Chloride Exposure Affects Oocyte Maturation Through AMPK/mTOR-Mediated Mitochondrial Autophagy. Int J Mol Sci 2025; 26:3603. [PMID: 40332119 PMCID: PMC12026530 DOI: 10.3390/ijms26083603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mercury, a prevalent heavy metal, negatively impacts oocyte maturation. However, the exact mechanism by which methylmercury chloride (MMC) affects this process remains elusive. The present study found that MMC administration triggered meiotic failure in oocytes by disrupting cumulus cell expansion, leading to compromised spindle apparatus and altered chromosomal architecture, which are crucial for oocyte development. This disruption is characterized by abnormal microtubule organization and defective chromosome alignment. Additionally, MMC exposure caused oxidative stress-induced apoptosis due to mitochondrial dysfunction, as indicated by decreased mitochondrial membrane potential, mitochondrial content, mitochondrial DNA copy number, and adenosine triphosphate levels. Proteomic analysis identified 97 differentially expressed proteins, including P62, an autophagy marker. Our results confirmed that MMC induced autophagy, particularly through the hyperactivation of the mitochondrial autophagy to remove damaged and normal mitochondria. The mitochondrial reactive oxygen species (ROS) scavenger Mito-TEMPO alleviated oxidative stress and mitochondrial autophagy levels, suggesting that mitochondrial ROS initiates this autophagic response. Notably, MMC activates mitochondrial autophagy via the monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signal pathway due to mitochondrial dysfunction. In vivo studies in mice revealed that MMC exposure decreased reproductive performance, attributed to excessive mitochondrial autophagy leading to reduced oocyte quality. Overall, these findings demonstrate that MMC exposure impairs oocyte maturation via the hyperactivation of mitochondrial autophagy induced by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shengkui Hou
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Caiyu Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Xin Ma
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jing Zhao
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jun Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Yi Fang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Hongyu Liu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - He Ding
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jing Guo
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Wenfa Lu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| |
Collapse
|
2
|
Pelletier AR, Villamarin F, Campos-Silva JV, Scabin AB, Doig LE, Jardine TD. Trophic magnification rates of eighteen trace elements in freshwater food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178069. [PMID: 39700991 DOI: 10.1016/j.scitotenv.2024.178069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Trace elements play diverse roles in animal physiology ranging from essential micronutrients to potent toxicants. Despite animals accumulating many trace elements through their diets, relationships between trophic positions and biological concentrations of most trace elements remain poorly described. We report trophic transfer rates of Al, As, Ba, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr, Ti, Tl, U, V, and Zn from 31 freshwaters located in distinct biogeographic regions. Elemental concentrations and stable nitrogen isotope ratios (proxies for trophic position) were determined in zooplankton, molluscs, insects, and fishes from all sites. Trophic magnification factors (TMFs) were calculated as the mean fraction of each element that transferred from prey to predators at each site. TMFs >1 indicate biomagnification and TMFs <1 indicate biodilution. Mercury was the only biomagnifying element (median TMF = 3.77), and selenium neither biomagnified nor biodiluted (median TMF = 1.01). All 16 remaining elements biodiluted, with median TMFs ranging from 0.07 (uranium) to 0.60 (thallium). We used a model selection procedure to determine whether intrinsic physical and chemical elemental properties explained differences in TMFs among elements. Elements with high covalent bonding indices (Q) had marginally greater TMFs than elements with low Q values. Based on their high Q values, we recommend investigation into the trophic transfer rates of ten additional trace elements, some of which may biomagnify through some aquatic food webs. The high variability in TMFs within elements suggests that ecological factors are likely more important than intrinsic elemental properties at determining elemental TMFs.
Collapse
Affiliation(s)
- Alexander R Pelletier
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - Francisco Villamarin
- Grupo de Biogeografía y Ecología Espacial (BioGeoE(2)), Universidad Regional Amazónica Ikiam, km7 vía Muyuna, Tena, Napo, Ecuador.
| | - João V Campos-Silva
- Instituto Juruá, Rua Ajuricaba, 359 - Aleixo, Manaus, Amazonas 69083-020, Brazil; Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936 - Petrópolis, Manaus, Amazonas 69067-375, Brazil
| | - Andressa B Scabin
- Instituto Juruá, Rua Ajuricaba, 359 - Aleixo, Manaus, Amazonas 69083-020, Brazil.
| | - Lorne E Doig
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - Timothy D Jardine
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada.
| |
Collapse
|
3
|
Shen B, Lu R, Lv M, Chen J, Li J, Long J, Cai H, Su L, Gong Z. Association between the levels of toxic heavy metals and schizophrenia in the population of Guangxi, China: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125179. [PMID: 39490508 DOI: 10.1016/j.envpol.2024.125179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The relationship between body levels of heavy metals and the risk of schizophrenia remains unclear. This study investigates the relationship between plasma levels of toxic heavy metals and the risk of schizophrenia among adults in Guangxi, China. Plasma concentrations of lead (Pb), cadmium (Cd), arsenic (As), and chromium (Cr) were measured using inductively coupled plasma mass spectrometry (ICP-MS). To evaluate both the single and combined effects of metal exposure on the risk of schizophrenia, we employed multivariate logistic regression, Bayesian Kernel Machine Regression (BKMR), and generalized Weighted Quantile Sum (gWQS) models. Additionally, we employed the Comparative Toxicogenomics Database (CTD) to analyze the mechanistic pathways through which metal mixtures may induce schizophrenia. Relative mRNA expression levels were measured using Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to predict potential biological functions. In logistic regression models, compared to the lowest exposure group (Q1), the odds ratios (ORs) for Pb in groups Q2, Q3, and Q4 were 2.18 (95% CI: 1.20-3.94), 4.74 (95% CI: 2.52-8.95), and 3.62 (95% CI: 1.80-7.28), respectively. Both BKMR and gWQS models indicated a positive correlation between the combined effects of toxic heavy metal mixtures and the risk of schizophrenia, with Pb demonstrating the most substantial impact, particularly in older adults and females. Elevated levels of tumor necrosis factor (TNF) and interleukin-1 beta (IL-1β) were observed in patients with schizophrenia, while the expression of tumor protein p53 (TP53) was significantly reduced. These findings underscore the critical need to avoid exposure to toxic heavy metals to prevent schizophrenia, highlighting significant public health implications.
Collapse
Affiliation(s)
- Bing Shen
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Rumei Lu
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Miao Lv
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - JieWen Chen
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Jiale Li
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Jianxiong Long
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China
| | - Hong Cai
- Department of Medical Psychology and Behaviors, School of Public Health of Guangxi Medical University, Nanning, China
| | - Li Su
- Department of Epidemiology and Health Statistics, School of Public Health of Guangxi Medical University, Nanning, China.
| | - Zukang Gong
- Nanning Center for Disease Control and Prevention, Nanning, China.
| |
Collapse
|
4
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
5
|
Lee WK, Thévenod F, Prenner EJ. Global threat posed by metals and metalloids in the changing environment: a One Health approach to mechanisms of toxicity. Biometals 2024; 37:539-544. [PMID: 38709440 DOI: 10.1007/s10534-024-00606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Affiliation(s)
- Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany.
| | - Frank Thévenod
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany.
- Institute of Physiology and Pathophysiology, ZBAF, Witten/Herdecke University, Witten, Germany.
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
6
|
Yin T, Ji D, Su X, Zhou X, Wang X, He S, Jiang T, Yue X, Zhang H, Zhang Y, Peng J, Zou W, Liang D, Liu Y, Du Y, Zhang Z, Liang C, Cao Y. Using Bayesian and weighted regression to evaluate the association of idiopathic oligoastenoteratozoospermia with seminal plasma metal mixtures. CHEMOSPHERE 2024; 351:141202. [PMID: 38237779 DOI: 10.1016/j.chemosphere.2024.141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Idiopathic oligoastenoteratozoospermia (iOAT) affects 30% of infertile men of reproductive age. However, the associations between Cr, Fe, Cu, Se or Co levels and iOAT risk have not been determined. This research aimed to assess the associations between Cr, Fe, Cu, Se and Co levels as well as their mixtures in seminal plasma and the risk of iOAT and severe iOAT. Therefore, a case‒control study including 823 participants (416 iOAT patients and 407 controls) recruited from October 2021 to August 2022 at the reproductive medicine center of the First Affiliated Hospital of Anhui Medical University was conducted in Anhui, China. The concentrations of Cr, Fe, Cu, Se and Co in seminal plasma were detected via inductively coupled plasma‒mass spectrometry. Binary logistic regression models were used to assess the associations between the levels of Cr, Fe, Cu, Se and Co and the risk of iOAT and severe iOAT; additionally, Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regressions were performed to evaluate the joint effect of seminal plasma levels of Cr, Fe, Cu, Se and Co on the risk of iOAT and explore which elements contributed most to the relationship. We found significant associations between the concentrations of Fe, Cu and Se in seminal plasma and iOAT risk after adjusting for covariates (Fe, lowest tertile vs. second tertile: aOR = 1.86, 95% CI = 1.31, 2.64; Cu, lowest tertile vs. second tertile: aOR = 1.95, 95% CI = 1.37, 2.76; Se, lowest tertile vs. second tertile: aOR = 1.65, 95% CI = 1.17, 2.35). A lower Se concentration in seminal plasma (lowest tertile vs. second tertile: aOR = 1.84, 95% CI = 1.10, 3.10) was positively associated with the risk of severe iOAT. Additionally, we also observed an association between the concentration of Cr in seminal plasma and the risk of iOAT before adjusting for covariates (Cr, third tertile vs. lowest tertile: OR=1.44, 95% CI: 1.03, 2.02). According to the BKMR analyses, the risk of iOAT increased when the overall concentrations were less than the 25th percentile. The results from the WQS regression indicated that a negative WQS index was significantly associated with the iOAT risk, while a positive WQS index was not. Se and Fe had significant weights in the negative direction. In conclusion, lower Cu, Fe and Se levels in seminal plasma were positively associated with iOAT risk, while higher Cr levels in seminal plasma were positively associated with iOAT risk according to the single element model, and lower levels of Se were related to a greater risk of severe iOAT; when comprehensively considering all the results from BKMR and WQS regression, Fe, Se and Cr levels contributed most to this relationship.
Collapse
Affiliation(s)
- Tao Yin
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Ji
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Su
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Zhou
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Wang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shitao He
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinyu Yue
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Peng
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Huang Y, Zhao B, Liu G, Liu K, Dang B, Lyu H, Tang J. Effective reducing the mobility and health risk of mercury in soil under thiol-modified biochar amendment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132712. [PMID: 37827104 DOI: 10.1016/j.jhazmat.2023.132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Soil mercury contamination poses health risks. However, effective immobilization techniques are lacking with challenges including low efficiency, limited long-term stability, susceptibility to multi-medium interference, and difficulty in controlling health risks. This study confirmed the feasibility of thiol-modified biochar, and elucidated the underlying mechanisms. Within 32 days of treatment, the leachable mercury decreased from 184.7 μg/L to below the hazardous waste threshold (100 μg/L, HJ/T299-2007, China). After 198 days of treatment, the soil achieved a safe ecological state with a mercury immobilization rate of 79.8-98.2% and a 50% reduction in available methylmercury. Thiol-modified biochar facilitated the conversion of active mercury species (exchangeable, carbonate, and oxide) into stable forms (organic and residual) through complexation and precipitation (e.g., HgS). Soil quality improvements were observed, including enhanced cation exchange capacity, available nitrogen, and total organic carbon. Thiol-modified biochar exhibits long-term effectiveness. After one and two years of treatment, the leachable mercury remained within acceptable health risk limit (hazard quotient < 1) for adults and children, respectively. After three years, the leachable mercury met the Level III groundwater quality standard (< 1 μg/L, GB 14848-2017, China). This study demonstrates an effective strategy for long-term diminishing mercury mobility and health risks in soil.
Collapse
Affiliation(s)
- Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bin Zhao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China; Norwegian University of Life Sciences, Department of Environmental Sciences, 5003, N-1432 Ås, Norway
| | - Gaocheng Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kai Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Process and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|
9
|
Harini K, Girigoswami K, Anand AV, Pallavi P, Gowtham P, Elboughdiri N, Girigoswami A. Nano-mediated Strategies for Metal Ion–Induced Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. CURRENT PHARMACOLOGY REPORTS 2022; 8:450-463. [DOI: 10.1007/s40495-022-00307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/29/2023]
|
10
|
Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number. TOXICS 2022; 10:toxics10060336. [PMID: 35736944 PMCID: PMC9227082 DOI: 10.3390/toxics10060336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.
Collapse
|
11
|
Othman Z, Mackey HR, Mahmoud KA. A critical overview of MXenes adsorption behavior toward heavy metals. CHEMOSPHERE 2022; 295:133849. [PMID: 35124080 DOI: 10.1016/j.chemosphere.2022.133849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
In recent years, tremendous interest has been generated in MXenes as a fast-growing and diversified family of two-dimensional (2D) materials with a wide range of potential uses. MXenes exhibit many unique structural and physicochemical properties that make them particularly attractive as adsorbents for removing heavy metals from aqueous media, including a large surface area, abundant surface terminations, electron-richness, and hydrophilic nature. In light of the adsorption capabilities of MXenes at the ever-increasing rate of expansion, this review investigates the recent computational predictions for the adsorption capabilities of MXenes and the effect of synthesis of different MXene on their remediation behavior toward heavy metals. The influence of MXene engineering strategies such as alkalization, acidification, and incorporation into organic and inorganic hosts on their surface properties and adsorption capacity is compared to provide critical insights for designing effective MXene adsorbents. Additionally, the review discusses MXenes' adsorption mechanisms, the effect of coexisting ions on MXenes' selectivity, the regeneration of exhausted MXenes, and provides an overview of MXenes' stability and biocompatibility to demonstrate their potentiality for wastewater remediation. Finally, the review identifies current flaws and offers recommendations for further research.
Collapse
Affiliation(s)
- Zakarya Othman
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar; Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hamish R Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khaled A Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
12
|
NiONP-Induced Oxidative Stress and Mitochondrial Impairment in an In Vitro Pulmonary Vascular Cell Model Mimicking Endothelial Dysfunction. Antioxidants (Basel) 2022; 11:antiox11050847. [PMID: 35624710 PMCID: PMC9137840 DOI: 10.3390/antiox11050847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 01/27/2023] Open
Abstract
The development and use of nanomaterials, especially of nickel oxide nanoparticles (NiONPs), is expected to provide many benefits but also has raised concerns about the potential human health risks. Inhaled NPs are known to exert deleterious cardiovascular side effects, including pulmonary hypertension. Consequently, patients with pulmonary hypertension (PH) could be at increased risk for morbidity. The objective of this study was to compare the toxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC) under physiological and pathological conditions. The study was conducted with an in vitro model mimicking the endothelial dysfunction observed in PH. HPAEC were cultured under physiological (static and normoxic) or pathological (20% cycle stretch and hypoxia) conditions and exposed to NiONPs (0.5–5 μg/cm2) for 4 or 24 h. The following endpoints were studied: (i) ROS production using CM-H2DCF-DA and MitoSOX probes, (ii) nitrite production by the Griess reaction, (iii) IL-6 secretion by ELISA, (iv) calcium signaling with a Fluo-4 AM probe, and (v) mitochondrial dysfunction with TMRM and MitoTracker probes. Our results evidenced that under pathological conditions, ROS and nitrite production, IL-6 secretions, calcium signaling, and mitochondria alterations increased compared to physiological conditions. Human exposure to NiONPs may be associated with adverse effects in vulnerable populations with cardiovascular risks.
Collapse
|
13
|
A flexible and disposable electrochemical sensor for the evaluation of arsenic levels: A new and efficient method for the batch fabrication of chemically modified electrodes. Anal Chim Acta 2022; 1194:339413. [DOI: 10.1016/j.aca.2021.339413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/10/2023]
|
14
|
Germande O, Baudrimont M, Beaufils F, Freund-Michel V, Ducret T, Quignard JF, Errera MH, Lacomme S, Gontier E, Mornet S, Bejko M, Muller B, Marthan R, Guibert C, Deweirdt J, Baudrimont I. NiONPs-induced alteration in calcium signaling and mitochondrial function in pulmonary artery endothelial cells involves oxidative stress and TRPV4 channels disruption. Nanotoxicology 2022; 16:29-51. [PMID: 35090355 DOI: 10.1080/17435390.2022.2030821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In New Caledonia, anthropic activities, such as mining, increase the natural erosion of soils in nickel mines, which in turn, releases nickel oxide nanoparticles (NiONPs) into the atmosphere. Pulmonary vascular endothelial cells represent one of the primary targets for inhaled nanoparticles. The objective of this in vitro study was to assess the cytotoxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC). Special attention will be given to the level of oxidative stress and calcium signaling, which are involved in the physiopathology of cardiovascular diseases. HPAEC were exposed to NiONPs (0.5-150 μg/cm2) for 4 or 24 h. The following different endpoints were studied: (i) ROS production using CM-H2DCF-DA probe, electron spin resonance, and MitoSOX probe; the SOD activity was also measured (ii) calcium signaling with Fluo4-AM, Rhod-2, and Fluo4-FF probes; (iii) inflammation by IL-6 production and secretion and, (iv) mitochondrial dysfunction and apoptosis with TMRM and MitoTracker probes, and AnnexinV/PI. Our results have evidenced that NiONPs induced oxidative stress in HPAEC. This was demonstrated by an increase in ROS production and a decrease in SOD activity, the two mechanisms seem to trigger a pro-inflammatory response with IL-6 secretion. In addition, NiONPs exposure altered calcium homeostasis inducing an increased cytosolic calcium concentration ([Ca2+]i) that was significantly reduced by the extracellular calcium chelator EGTA and the TRPV4 inhibitor HC-067047. Interestingly, exposure to NiONPs also altered TRPV4 activity. Finally, HPAEC exposure to NiONPs increased intracellular levels of both ROS and calcium ([Ca2+]m) in mitochondria, leading to mitochondrial dysfunction and HPAEC apoptosis.
Collapse
Affiliation(s)
- Ophélie Germande
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France.,UMR EPOC 5805, Université de Bordeaux, Arcachon, France
| | - Magalie Baudrimont
- Université de Bordeaux, Bordeaux, France.,UMR EPOC 5805, Université de Bordeaux, Arcachon, France
| | - Fabien Beaufils
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France.,Service d'Exploration Fonctionnelle Respiratoire, Service de Pédiatrie Médicale, CHU de Bordeaux, Bordeaux, France
| | - Véronique Freund-Michel
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France
| | - Thomas Ducret
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France
| | - Jean-François Quignard
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France
| | - Marie-Hélène Errera
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabrina Lacomme
- Université de Bordeaux, Bordeaux, France.,CNRS, INSERM, BIC, UMS 3420, Université de Bordeaux, Bordeaux, France
| | - Etienne Gontier
- Université de Bordeaux, Bordeaux, France.,CNRS, INSERM, BIC, UMS 3420, Université de Bordeaux, Bordeaux, France
| | - Stéphane Mornet
- CNRS Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, Bordeaux, France
| | - Megi Bejko
- CNRS Bordeaux INP, ICMCB, UMR 5026, Université de Bordeaux, Bordeaux, France
| | - Bernard Muller
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France
| | - Roger Marthan
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France.,Service d'Exploration Fonctionnelle Respiratoire, Service de Pédiatrie Médicale, CHU de Bordeaux, Bordeaux, France
| | | | - Juliette Deweirdt
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France
| | - Isabelle Baudrimont
- Université de Bordeaux, Bordeaux, France.,Inserm U 1045, Centre de Recherche Cardio-Thoracique, Pessac, France
| |
Collapse
|
15
|
Huang HQ, Li YY, Chen SH, Liu ZG, Cui YM, Li HQ, Guo Z, Huang XJ. Noble-metal-free Fe 3O 4/Co 3S 4 nanosheets with oxygen vacancies as an efficient electrocatalyst for highly sensitive electrochemical detection of As(III). Anal Chim Acta 2022; 1189:339208. [PMID: 34815044 DOI: 10.1016/j.aca.2021.339208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
The electrochemical method for highly sensitive determination of arsenic(III) in real water samples with noble-metal-free nanomaterials is still a difficult but significant task. Here, an electrochemical sensor driven by noble-metal-free layered porous Fe3O4/Co3S4 nanosheets was successfully employed for As(III) analysis, which was prepared via a facile two-step method involves a hydrothermal treatment and a subsequent sulfurization process. As expected, the electrochemical detection of As(III) in 0.1 M HAc-NaAc (pH 6.0) by square wave anodic stripping voltammetry (SWASV) with a considerable sensitivity of 4.359 μA/μg·L-1 was obtained, which is better than the commonly used noble metals modified electrodes. Experimental and characterization results elucidate the enhancement of As(III) electrochemical performance could be attributed to its nano-porous structure, the presence of oxygen vacancies and strong synergetic coupling effects between Fe3O4 and Co3S4 species. Besides, the Fe3O4/Co3S4 modified screen printed carbon electrode (Fe3O4/Co3S4-SPCE) shows remarkable stability and repeatability, valuable anti-interference ability and could be used for detection in real water samples. Consequently, the results confirm that as-prepared porous Fe3O4/Co3S4 nanosheets is identified as a promising modifier to detect As(III) in real sample analysis.
Collapse
Affiliation(s)
- Hong-Qi Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Yong-Yu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Zhong-Gang Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Yu-Min Cui
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Hui-Quan Li
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Zheng Guo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| | - Xing-Jiu Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China.
| |
Collapse
|
16
|
Adsorption of As(III) from aqueous solutions using MnO2 strengthened WTRs-chitosan beads made by homogenous method with freeze-drying. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Liu C, Ye Z, Wei X, Mao S. Recent advances in field‐effect transistor sensing strategies for fast and highly efficient analysis of heavy metal ions. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Chengbin Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Ziwei Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse Tongji University 1239 Siping Road Shanghai 200092 China
| |
Collapse
|
18
|
Olimón-Andalón V, Valdés-Flores J, Ley-Quiñonez CP, Zavala-Norzagaray AA, Aguirre AA, León-Sicairos N, Velázquez-Román J, Flores-Villaseñor H, Acosta-Smith E, Sosa-Cornejo I, Valdez-Flores M, Hart CE, Canizalez-Román A. Essential and trace metals in a post-nesting olive ridley turtles (Lepidochelys olivacea) in Ceuta beach, Sinaloa, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29998-30006. [PMID: 33576959 DOI: 10.1007/s11356-021-12819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Trace metals have been found in sea turtle blood and tissues and may represent a threat to these endangered species. Essential trace metal (Cu, Zn Cd, Pb, As, and Hg) concentrations were determined in blood of adult female, post-nesting olive ridley turtles Lepidochelys olivacea (n = 35) on Ceuta beach, Sinaloa, Mexico. Essential metals (Zn and Cu) analyzed were found in higher concentrations than toxic metals (Cd and Pb), while As and Hg concentrations were below the limits of detection (0.01 μg g-1). Low Pb concentrations (0.09 μg g-1) were previously observed in sea turtles in the Gulf of California. There were no significant correlations found between curved carapace length (61.00-71.00 ± 2.29) vs metal concentrations (p > 0.05). Cd levels were relatively high when compared to other species and populations of sea turtles worldwide and Cd may represent the greatest risk for sea turtles in the Mexican Pacific. Such concentrations of Cd may pose a further risk to sea turtles through bioaccumulation from the nesting female to offspring which may affect embryo development.
Collapse
Affiliation(s)
- Vicente Olimón-Andalón
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Jorge Valdés-Flores
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Cesar Paul Ley-Quiñonez
- Instituto Politécnico Nacional, CIIDIR-SINALOA, Guasave, Sinaloa, Mexico
- Investigación, Capacitación y Soluciones Ambientales y Sociales A.C. (ICSAS), 63160, Tepic, Mexico
| | - Alan A Zavala-Norzagaray
- Instituto Politécnico Nacional, CIIDIR-SINALOA, Guasave, Sinaloa, Mexico
- Investigación, Capacitación y Soluciones Ambientales y Sociales A.C. (ICSAS), 63160, Tepic, Mexico
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Nidia León-Sicairos
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Jorge Velázquez-Román
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Hector Flores-Villaseñor
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
- Secretariat of Health, The Sinaloa State Public Health Laboratory, 80020, Culiacan, Sinaloa, Mexico
| | - Erika Acosta-Smith
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Igmar Sosa-Cornejo
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Marco Valdez-Flores
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Catherine Edwina Hart
- Investigación, Capacitación y Soluciones Ambientales y Sociales A.C. (ICSAS), 63160, Tepic, Mexico
| | - Adrian Canizalez-Román
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico.
- Secretariat of Health, The Women's Hospital, 80127, Culiacan, Mexico.
| |
Collapse
|
19
|
|
20
|
Muthukumar V, Kulathu Iyer S. A simple and optically responsive chemosensor for the detection of Al3+ and Cr3+: In live cells and real sample analysis. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Raisbeck MF. Water Quality for Cattle: Metalloid and Metal Contamination of Water. Vet Clin North Am Food Anim Pract 2020; 36:581-620. [PMID: 32948413 DOI: 10.1016/j.cvfa.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Water is the most important nutrient for rangeland livestock. However, competition with municipalities, industry, and other water users often results in grazing livestock being forced to use water supplies that are less than perfect. Surface water in western rangleands are often contaminated by mineral extraction, irrigation runoff and other human activities. Mineral contaminants in drinking water are additive with similar contaminants in feedstuffs. The goal of this article is to provide producers and veterinarians with the basic background to make informed decisions about whether a given water supply is "safe" for livestock.
Collapse
Affiliation(s)
- Merl F Raisbeck
- Department of Veterinary Sciences, College of Agriculture, University of Wyoming, 2852 Riverside, Laramie, WY 82070, USA.
| |
Collapse
|
22
|
Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar-modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal Bioanal Chem 2020; 412:4113-4125. [PMID: 32296905 DOI: 10.1007/s00216-020-02642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
The present work reports a newly developed square wave anodic stripping voltammetry (SWASV) methodology using novel gold nanostar-modified screen-printed carbon electrodes (AuNS/SPCE) and modified Britton-Robinson buffer (mBRB) for simultaneous detection of trace cadmium(II), arsenic(III), and selenium(IV). During individual and simultaneous detection, Cd2+, As3+, and Se4+ exhibited well-separated SWASV peaks at approximately - 0.48, - 0.09, and 0.65 V, respectively (versus Ag/AgCl reference electrode), which enabled a highly selective detection of the three analytes. Electrochemical impedance spectrum tests showed a significant decrease in charge transfer resistance with the AuNS/SPCE (0.8 kΩ) compared with bare SPCE (2.4 kΩ). Cyclic voltammetry experiments showed a significant increase in electroactive surface area with electrode modification. The low charge transfer resistance and high electroactive surface area contributed to the high sensitivity for Cd2+ (0.0767 μA (0.225 μg L-1)-1), As3+ (0.2213 μA (μg L-1)-1), and Se4+ (μA (μg L-1)-1). The three analytes had linear stripping responses over the concentration range of 0 to 100 μg L-1, with the obtained LoD for Cd2+, As3+, and Se4+ of 1.6, 0.8, and 1.6 μg L-1, respectively. In comparison with individual detection, the simultaneous detection of As3+ and Se4+ showed peak height reductions of 40.8% and 42.7%, respectively. This result was associated with the possible formation of electrochemically inactive arsenic triselenide (As2Se3) during the preconcentration step. Surface water analysis resulted in average percent recoveries of 109% for Cd2+, 93% for As3+, and 92% for Se4+, indicating the proposed method is accurate and reliable for the simultaneous detection of Cd2+, As3+, and Se4+ in real water samples. Graphical abstract.
Collapse
|
23
|
Schofield K. An Important Need to Monitor from an Early Age the Neurotoxins in the Blood or by an Equivalent Biomarker. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183425. [PMID: 31527390 PMCID: PMC6766009 DOI: 10.3390/ijerph16183425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
An overwhelming amount of evidence now suggests that some people are becoming overloaded with neurotoxins. This is mainly from changes in their living environment and style, coupled with the fact that all people are different and display a broad distribution of genetic susceptibilities. It is important for individuals to know where they lie concerning their ability to either reject or retain toxins. Everyone is contaminated with a certain baseline of toxins that are alien to the body, namely aluminum, arsenic, lead, and mercury. Major societal changes have modified their intake, such as vaccines in enhanced inoculation procedures and the addition of sushi into diets, coupled with the ever-present lead, arsenic, and traces of manganese. It is now apparent that no single toxin is responsible for the current neurological epidemics, but rather a collaborative interaction with possible synergistic components. Selenium, although also a neurotoxin if in an excessive amount, is always present and is generally more present than other toxins. It performs as the body’s natural chelator. However, it is possible that the formation rates of active selenium proteins may become overburdened by other toxins. Every person is different and it now appears imperative that the medical profession establish an individual’s neurotoxicity baseline. Moreover, young women should certainly establish their baselines long before pregnancy in order to identify possible risk factors.
Collapse
Affiliation(s)
- Keith Schofield
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, USA.
| |
Collapse
|
24
|
Echeverría R, Vrhovnik P, Salcedo-Bellido I, Iribarne-Durán LM, Fiket Ž, Dolenec M, Martin-Olmedo P, Olea N, Arrebola JP. Levels and determinants of adipose tissue cadmium concentrations in an adult cohort from Southern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1028-1036. [PMID: 31018418 DOI: 10.1016/j.scitotenv.2019.03.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
This study was conceived as a first step to evaluate the suitability of adipose tissue cadmium (Cd) concentrations as a biomarker for the assessment of long-term exposure. Specifically, the aim of this work was to explore the socio-demographic, dietary, and lifestyle determinants of adipose tissue Cd concentrations. The study population is a subsample of GraMo cohort. Adipose tissue samples were intraoperatively collected from 226 adult volunteers recruited in two public hospitals from Granada, Spain. Cd concentrations in adipose tissue were analyzed by High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS). Data on socio-demographic characteristics, lifestyle, diet and health status were collected by face-to-face interviews. Predictors of Cd concentrations were assessed by multivariable linear regression with a stepwise variable selection. We found detectable levels of Cd in the adipose tissue of all the study participants, with a mean concentration (±standard deviation) of 12.66 ± 18.91 μg/kg. Smoking habit at recruitment was associated with increased adipose tissue Cd concentrations (β for smokers = 0.669 p < 0.001; β for former smokers = 0.502, p < 0.001; reference = non-smokers). Age was positively associated with Cd concentrations (β = 0.014, p < 0.001), and men showed lower concentrations than women (β = -0.424, p < 0.001). Obesity, measured as Body Mass Index (BMI), showed an inverse association with Cd concentrations (β = -0.038, p < 0.001). Egg consumption ≥2 portions/week (β = 0.241, p = 0.025) was positively associated with Cd concentrations. Perceived exposure to paints was also positively associated with Cd concentrations. The observed associations with age, smoking habit, BMI, and egg and meat consumption did not substantially change after sex/gender stratification. Our results are consistent with currently-known Cd sources and suggest other potential pathways, which might be population-specific. As a whole, our findings underline the potential relevance of adipose tissue as a biological matrix for exposure characterization to Cd, as well as for the assessment of long-term clinical implications of the exposure, particularly in obesity-related diseases.
Collapse
Affiliation(s)
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), Ljubjana, Slovenia
| | - Inmaculada Salcedo-Bellido
- University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospitales Universitarios de Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Luz María Iribarne-Durán
- University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospitales Universitarios de Granada, Spain
| | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Matej Dolenec
- University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Ljubljana, Slovenia
| | - Piedad Martin-Olmedo
- Instituto de Investigación Biosanitaria de Granada, Hospitales Universitarios de Granada, Spain; Escuela Andaluza de Salud Pública, Granada, Spain
| | - Nicolás Olea
- University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospitales Universitarios de Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan Pedro Arrebola
- University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada, Hospitales Universitarios de Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
25
|
Spadaro L, Arena F, Di Chio R, Palella A. Definitive Assessment of the Level of Risk of Exhausted Catalysts: Characterization of Ni and V Contaminates at the Limit of Detection. Top Catal 2018. [DOI: 10.1007/s11244-018-1118-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Pereira R, Leite E, Raimundo J, Guilherme S, Puga S, Pinto-Ribeiro F, Santos MA, Canário J, Almeida A, Pacheco M, Pereira P. Metals(loids) targeting fish eyes and brain in a contaminated estuary - Uncovering neurosensory (un)susceptibility through bioaccumulation, antioxidant and morphometric profiles. MARINE ENVIRONMENTAL RESEARCH 2018; 140:403-411. [PMID: 30054132 DOI: 10.1016/j.marenvres.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
This study examined the susceptibility of fish (Liza aurata) eyes and brain to metals(loids) contamination under realistic exposure conditions. A multidimensional approach was applied to fish caught at a chronically contaminated site (BAR) and at a reference site of the Tagus estuary (Portugal), which comprised metals(loids) accumulation in eyes and brain together with a battery of enzymatic and non-enzymatic antioxidants, as well as brain morphometry (i.e. cell density). Trace element levels in the blood, gills, liver and kidney allowed interpretations on their preferential pathway(s) to the eyes and brain. Metals(loids) accumulation pointed out the elevated vulnerability of the fish eyes at BAR, probably related with the direct waterborne uptake. Pb uptake in L. aurata eyes could be associated both with water and indirect pathways. At the most contaminated site, metals(loids) were on the basis of pro-oxidant conditions in the ocular tissues, while no indication of toxicity was recorded in the brain. Overall, the results disclosed a differential bioaccumulation among fish organs, suggesting that, in the L. aurata population studied, metal organotropism underlie the lower susceptibility of the brain comparing to the eyes. However, mechanisms remain little understood and further work is needed.
Collapse
Affiliation(s)
- Ricardo Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Leite
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Sofia Guilherme
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Ana Santos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine (EM), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
27
|
Treu G, Krone O, Unnsteinsdóttir ER, Greenwood AD, Czirják GÁ. Correlations between hair and tissue mercury concentrations in Icelandic arctic foxes (Vulpes lagopus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1589-1598. [PMID: 29107366 DOI: 10.1016/j.scitotenv.2017.10.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Monitoring organic pollutants in wildlife is a common approach to evaluate environmental health, chemical exposure and to make hazard assessments. However, pollutant concentrations measured from different tissue types among studies impede direct comparisons of levels and toxicity benchmarks among species and regions. For example, mercury (Hg) is a metal of both natural and anthropogenic origin which poses health risks for marine and arctic biota in particular. Although hair is recognized as the least invasive sample type for Hg exposure measurement in wildlife, measurements in previous studies have used different tissues among individuals and species. This lack of tissue type consistency hinders cross study comparisons. Therefore to systematically evaluate the use of hair in ecotoxicological studies, total mercury (THg) concentrations measured from hair were compared to values obtained from liver and kidney in 35 Icelandic arctic foxes (Vulpes lagopus). THg concentrations varied considerably among tissues with hair and kidney levels generally lower than in liver. Nevertheless, significant correlations among tissue types were observed. THg values in hair were predictive for liver (R2=0.61) and kidney THg levels (R2=0.51) and liver values were a good predictor of THg in kidney (R2=0.77). We provide further evidence that non-invasively collected hair samples reflect the THg levels of internal tissues. We present equations derived from multiple linear regression models that can be used to relate THg levels among tissue types in order to extrapolate THg values from hair to soft tissues. Using these equations, we compare the results of previous studies monitoring THg levels in different tissues of arctic foxes from various regions of the Arctic. Our findings support that hair is a suitable sample matrix for ecotoxicological studies of arctic predators and may be applied in both wildlife welfare and conservation contexts for arctic vulpine species.
Collapse
Affiliation(s)
- Gabriele Treu
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | | | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany; Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Gábor Á Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| |
Collapse
|
28
|
Schofield K. The Metal Neurotoxins: An Important Role in Current Human Neural Epidemics? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1511. [PMID: 29206191 PMCID: PMC5750929 DOI: 10.3390/ijerph14121511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Many published studies have illustrated that several of the present day neurological epidemics (autism, attention deficit disorder, Alzheimer's) cannot be correlated to any single neurotoxicant. However, the present scientific examination of the numerous global blood monitoring databases for adults that include the concentrations of the neurotoxic elements, aluminum (Al), arsenic (As), lead (Pb), manganese (Mn), mercury (Hg), and selenium (Se) clearly indicate that, when considered in combination, for some, the human body may become easily over-burdened. This can be explained by changes in modern lifestyles. Similar data, solely for pregnant women, have been examined confirming this. All these elements are seen to be present in the human body and at not insignificant magnitudes. Currently suggested minimum risk levels (MRL) for humans are discussed and listed together with averages of the reported distributions, together with their spread and maximum values. One observation is that many distributions for pregnant women are not too dissimilar from those of general populations. Women obviously have their individual baseline of neurotoxin values before pregnancy and any efforts to modify this to any significant degree is not yet clearly apparent. For any element, distribution shapes are reasonably similar showing broad distributions with extended tails with numerous outlier values. There are a certain fraction of people that lie well above the MRL values and may be at risk, especially if genetically susceptible. Additionally, synergistic effects between neurotoxins and with other trace metals are now also being reported. It appears prudent for women of child-bearing age to establish their baseline values well before pregnancy. Those at risk then can be better identified. Adequate instrumental testing now is commercially available for this. In addition, directives are necessary for vaccination programs to use only non-neurotoxic adjuvants, especially for young children and all women of child-bearing ages. Additionally, clearer directives concerning fish consumption must now be reappraised.
Collapse
Affiliation(s)
- Keith Schofield
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, USA.
| |
Collapse
|
29
|
Vervaet BA, D’Haese PC, Verhulst A. Environmental toxin-induced acute kidney injury. Clin Kidney J 2017; 10:747-758. [PMID: 29225803 PMCID: PMC5716161 DOI: 10.1093/ckj/sfx062] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
Human beings are exposed to various potentially toxic agents and conditions in their natural and occupational environments. The kidney, due to its concentrating ability and excretory function, is highly vulnerable to the effects of environmental toxins. Identifying the precise cause and mechanisms of environmentally induced renal injury remains a challenge for which various scientific disciplines need to be involved. Investigations in this field are confronted with the apparent infinite types of toxins, their mutual interaction, handling/metabolization by the body, ways of exposure, etc. Although interdisciplinary efforts and persistence are required to identify, mechanistically unravel and tackle environmental toxin-induced pathologies, research eventually pays off in ameliorated working/living conditions and development of preventive/therapeutic strategies. This review was compiled to particularly emphasize the need for a maintained awareness of environmental threats in general and those targeting the kidney. Different mechanisms of renal toxicity are illustrated and discussed, thereby focusing on three types of environmental toxins, namely aristolochic acid, melamine and heavy metals.
Collapse
Affiliation(s)
- Benjamin A Vervaet
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University Antwerp, Antwerp, Belgium
| | - Patrick C D’Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
31
|
Wu LL, Gong W, Shen SP, Wang ZH, Yao JX, Wang J, Yu J, Gao R, Wu G. Multiple metal exposures and their correlation with monoamine neurotransmitter metabolism in Chinese electroplating workers. CHEMOSPHERE 2017; 182:745-752. [PMID: 28535482 DOI: 10.1016/j.chemosphere.2017.04.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/08/2017] [Accepted: 04/23/2017] [Indexed: 05/17/2023]
Abstract
Excessive metal exposure has been recognized as one of the detrimental factors for brain damage. However, the potential adverse effects induced by heavy metals on monoamine neurotransmitter pathways remains poorly understood. Our study aimed to investigate the possible association between metal exposure and neurotransmitter metabolism. By a cross-sectional investigation, 224 electroplating workers and 213 non-electroplating exposure workers were recruited in the exposure and control groups. Metal exposure levels were analyzed using inductively-coupled plasma mass spectrometry and monoamine neurotransmitter pathway metabolites were measured by ultra-performance liquid chromatography tandem mass spectrometry in human urine samples. Multivariate linear regression model was used to assess the dose-response relationships of urinary metals and neurotransmitter pathway metabolites. Significant dose-dependent trends of urinary vanadium quartiles with all metabolites were observed, and the trends demonstrated significance after multiple testing correction. It also showed that urinary chromium levels were significantly associated with decreased serotonin level and cadmium was positively associated with norepinephrine and epinephrine. In addition, arsenic was positively associated with tryptophan, serotonin, dopamine and norepinephrine. Iron was positively associated with increased homovanillic acid (HVA) and epinephrine while nickel was negatively associated with increased epinephrine levels. Zinc was positively related to tryptophan, kynurenin (KYN), 5-hydroxyindole acetic acid (5-HIAA), dopamine, HVA and norepinephrine. There was no significant association between urinary copper with any other metabolites after adjusting of multiple metal models. Metal exposure may be associated with neurotransmitter metabolism disturbances. The present work is expected to provide some support in the prevention and management of metal-associated neurological diseases.
Collapse
Affiliation(s)
- Lin-Lin Wu
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gong
- Jiangsu Provincial Centers for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Si-Peng Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhong-He Wang
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-Xi Yao
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Key Lab of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Gang Wu
- Changzhou Centers for Disease Prevention and Control, Changzhou, Jiangsu, China.
| |
Collapse
|
32
|
Wang YX, Wang P, Feng W, Liu C, Yang P, Chen YJ, Sun L, Sun Y, Yue J, Gu LJ, Zeng Q, Lu WQ. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:224-234. [PMID: 28274591 DOI: 10.1016/j.envpol.2017.01.083] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 05/22/2023]
Abstract
This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all Ptrend<0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Wuhan, Hubei, PR China
| | - Long-Jie Gu
- Reproductive Medicine Center, Tongji Hospital, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
33
|
Egorova KS, Ananikov VP. Welche Katalysatormetalle sind harmlos, welche giftig? Vergleich der Toxizitäten von Ni-, Cu-, Fe-, Pd-, Pt-, Rh- und Au-Salzen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603777] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ksenia S. Egorova
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 Moscow 119991 Russland
| | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 Moscow 119991 Russland
- Department of Chemistry; Saint Petersburg State University; Stary Petergof 198504 Russland
| |
Collapse
|
34
|
Egorova KS, Ananikov VP. Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angew Chem Int Ed Engl 2016; 55:12150-62. [PMID: 27532248 DOI: 10.1002/anie.201603777] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Environmental profiles for the selected metals were compiled on the basis of available data on their biological activities. Analysis of the profiles suggests that the concept of toxic heavy metals and safe nontoxic alternatives based on lighter metals should be re-evaluated. Comparison of the toxicological data indicates that palladium, platinum, and gold compounds, often considered heavy and toxic, may in fact be not so dangerous, whereas complexes of nickel and copper, typically assumed to be green and sustainable alternatives, may possess significant toxicities, which is also greatly affected by the solubility in water and biological fluids. It appears that the development of new catalysts and novel applications should not rely on the existing assumptions concerning toxicity/nontoxicity. Overall, the available experimental data seem insufficient for accurate evaluation of biological activity of these metals and its modulation by the ligands. Without dedicated experimental measurements for particular metal/ligand frameworks, toxicity should not be used as a "selling point" when describing new catalysts.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia. .,Department of Chemistry, Saint Petersburg State University, Stary Petergof, 198504, Russia.
| |
Collapse
|
35
|
Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A, Gao H, Koski K, Hurt R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 2016; 45:1750-80. [PMID: 26923057 PMCID: PMC4820079 DOI: 10.1039/c5cs00914f] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials.
Collapse
Affiliation(s)
| | | | | | - Xin Yi
- School of Engineering, USA.
| | | | - Agnes Kane
- Department of Pathology and Laboratory Medicine, USA. and Institute for Molecular and Nanoscale Innovation, USA
| | | | - Kristie Koski
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Robert Hurt
- School of Engineering, USA. and Institute for Molecular and Nanoscale Innovation, USA
| |
Collapse
|
36
|
Lee JW, Won EJ, Raisuddin S, Lee JS. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J Environ Sci (China) 2015; 35:115-127. [PMID: 26354700 DOI: 10.1016/j.jes.2015.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/05/2023]
Abstract
In environmental risk assessments (ERA), biomarkers have been widely used as an early warning signal of environmental contamination. However, biomarker responses have limitation due to its low relevance to adverse outcomes (e.g., fluctuations in community structure, decreases in population size, and other similar ecobiologically relevant indicators of community structure and function). To mitigate these limitations, the concept of adverse outcome pathways (AOPs) was developed. An AOP is an analytical, sequentially progressive pathway that links a molecular initiating event (MIE) to an adverse outcome. Recently, AOPs have been recognized as a potential informational tool by which the implications of molecular biomarkers in ERA can be better understood. To demonstrate the utility of AOPs in biomarker-based ERA, here we discuss a series of three different biological repercussions caused by exposure to benzo(a)pyrene (BaP), silver nanoparticles (AgNPs), and selenium (Se). Using mainly aquatic invertebrates and selected vertebrates as model species, we focus on the development of the AOP concept. Aquatic organisms are suitable bioindicator species whose entire lifespans can be observed over a short period; moreover, these species can be studied on the molecular and population levels. Also, interspecific differences between aquatic organisms are important to consider in an AOP framework, since these differences are an integral part of the natural environment. The development of an environmental pollutant-mediated AOP may enable a better understanding of the effects of environmental pollutants in different scenarios in the diverse community of an ecosystem.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Hamdard University, New Delhi 110062, India
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
37
|
Alberti G, Emma G, Colleoni R, Pesavento M, Nurchi VM, Biesuz R. Novel DFO-functionalized mesoporous silica for iron sensing. Part 2. Experimental detection of free iron concentration (pFe) in urine samples. Analyst 2015; 139:3940-8. [PMID: 24883429 DOI: 10.1039/c3an01488f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Successful in vivo chelation treatment of iron(iii) overload pathologies requires that a significant fraction of the administered drug actually chelates the toxic metal. Increased mobilization of the iron(iii) in experiments on animals or humans, most often evaluated from urinary output, is usually used as an assessment tool for chelation therapy. Alternatively, the efficiency of a drug is estimated by calculating the complexing ability of a chelating agent towards Fe(iii). The latter is calculated by the pFe value, defined as the negative logarithm of the concentration of the free metal ion in a solution containing 10 μM total ligand and 1 μM total metal at a physiological pH of 7.4. In theory, pFe has to be calculated taking into account all the complexation equilibria involving the metal and the possible ligands. Nevertheless, complexation reactions in complex systems such as serum and urine may hardly be accurately modelled by computer software. The experimental determination of the bioavailable fraction of iron(iii) in biological fluids would therefore be of the utmost relevance in the clinical practice. The efficiency of the therapy could be more easily estimated as well as the course of overload pathologies. In this context, the aim of the present work was the development of a sensor to assess the free iron directly in biological fluids (urine) of patients under treatment with chelating agents. In the proposed device (DFO-MS), the strong iron chelator deferoxamine (DFO) is immobilized on the MCM-41 mesoporous silica. The characterization of the iron(iii) sorption on DFO-MS was undertaken, firstly in 0.1 M KNO3, then directly in urine samples, in order to identify the sorption mechanism. The stoichiometry of the reaction in the solid phase was found to be: with an exchange constant (average value) of log βex = 40(1). The application of DFO-MS to assess pFe in SPU (Simulating Pathology Urine) samples was also considered. The results obtained were very promising for a future validation and subsequent application of the sensor in samples of patients undergoing chelation therapy.
Collapse
Affiliation(s)
- Giancarla Alberti
- Dipartimento di Chimica, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Morrison RJ, Peshut PJ, West RJ, Lasorsa BK. Mercury (Hg) speciation in coral reef systems of remote Oceania: Implications for the artisanal fisheries of Tutuila, Samoa Islands. MARINE POLLUTION BULLETIN 2015; 96:41-56. [PMID: 26028166 DOI: 10.1016/j.marpolbul.2015.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
We investigated Hg in muscle tissue of fish species from three trophic levels on fringing reefs of Tutuila (14°S, 171°W), plus water, sediment and turf alga. Accumulation of total Hg in the herbivore Acanthurus lineatus (Acanthuridae, lined surgeonfish, (n=40)) was negligible at 1.05 (±0.04) ng g(-1) wet-weight, (∼65% occurring as methyl Hg). The mid-level carnivore Parupeneus spp. (Mullidae, goatfishes (n=10)) had total Hg 29.8 (±4.5) ng g(-1) wet-weight (∼99% as methyl Hg). Neither A. lineatus or Parupeneus spp. showed a propensity to accumulate Hg based on body size. Both groups were assigned a status of "un-restricted" for monthly consumption limits for non-carcinogenic health endpoints for methyl Hg. The top-level carnivore Sphyraena qenie (Sphyraenidae, blackfin barracuda, n=3) had muscle tissue residues of 105, 650 and 741 ng g(-1) wet-weight (100% methyl Hg, with increasing concentration with body mass, suggesting that S. qenie >15 kg would have a recommendation of "no consumption".
Collapse
Affiliation(s)
- R John Morrison
- School of Earth and Environmental Sciences, University of Wollongong, Australia.
| | - Peter J Peshut
- School of Earth and Environmental Sciences, University of Wollongong, Australia; Nimbus Environmental Services, PO Box 72, Hilo, HI 96721, USA
| | - Ronald J West
- School of Earth and Environmental Sciences, University of Wollongong, Australia
| | | |
Collapse
|
39
|
Moghimi N, Mohapatra M, Leung KT. Bimetallic Nanoparticles for Arsenic Detection. Anal Chem 2015; 87:5546-52. [DOI: 10.1021/ac504116d] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nafiseh Moghimi
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1
| | - Mamata Mohapatra
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1
- Department of Hydro & Electro Metallurgy, Institute of Minerals and Materials Technology, Council of Scientific & Industrial Research, Bhubaneswar 751 013, Odisha, India
| | - Kam Tong Leung
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L3G1
| |
Collapse
|
40
|
Krey A, Ostertag SK, Chan HM. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:237-247. [PMID: 24958011 DOI: 10.1016/j.scitotenv.2014.05.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals.
Collapse
Affiliation(s)
- Anke Krey
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Sonja K Ostertag
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 20 Marie-Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
41
|
Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Kishore Dubey N, Rai AK. Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:133-44. [PMID: 25497769 DOI: 10.1016/j.ecoenv.2014.09.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 05/03/2023]
Abstract
Silicon (Si)-mediated alleviation of Cr(VI) toxicity was examined in wheat seedlings using an in vivo approach that involves chlorophyll fluorescence, laser induced breakdown spectroscopy (LIBS) and anatomical changes. Exposure to Cr(VI) significantly reduced the growth and photosynthetic activities (chlorophyll fluorescence) in wheat which was accompanied by remarkable accumulation of this element in tissues. However, addition of Si to the growth medium alleviated the effects of Cr(VI). The LIBS spectra were used as a fingerprint of the elemental compositions in wheat seedlings, which showed a reduction in Cr accumulation following Si addition. Nutrient element levels (Ca, Mg, K and Na) declined in wheat following the addition of Cr (VI), as recorded by LIBS and inductively coupled plasma atomic emission spectroscopy (ICAP-AES). However, addition of Si along with Cr(VI) increased the contents of nutrient elements in wheat. LIBS, ICAP-AES and AAS showed a similar distribution pattern of elements measured in wheat. Anatomical observations of leaf and root revealed that Cr(VI) affected internal structures while Si played a role in protection from toxic effects. The results showed the suitability of chlorophyll fluorescence as a parameter and appropriateness of LIBS technique and anatomical procedures to elucidate Si-mediated alleviation of Cr(VI) toxicity. Furthermore, our results suggest that the measured parameters and techniques can be used non-invasively for monitoring the growth of crops under different environmental conditions.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Center of Advance Studies, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Vijay Pratap Singh
- Govt. RamanujPratap Singhdev Post Graduate College, Baikunthpur, Korea-497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| | - Devendra Kumar Chauhan
- D.D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| | - Nawal Kishore Dubey
- Center of Advance Studies, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Awadhesh Kumar Rai
- Laser Spectroscopy Research Lab, Department of Physics, University of Allahabad, Allahabad, India.
| |
Collapse
|
42
|
Iha DS, Bianchini I. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:929-935. [PMID: 25848891 DOI: 10.1080/15226514.2014.1003793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Most metals disperse easily in environments and can be bioconcentrated in tissues of many organisms causing risks to the health and stability of aquatic ecosystems even at low concentrations. The use of plants to phytoremediation has been evaluated to mitigate the environmental contamination by metals since they have large capacity to adsorb or accumulate these elements. In this study we evaluate Salvinia minima growth and its ability to accumulate metals. The plants were cultivated for about 60 days in different concentrations of Cd, Ni, Pb and Zn (tested alone) in controlled environmental conditions and availability of nutrients. The results indicated that S. minima was able to grow in low concentrations of selected metals (0.03 mg L(-1) Cd, 0.40 mg L(-1) Ni, 1.00 mg L(-1) Pb and 1.00 mg L(-1) Zn) and still able to adsorb or accumulate metals in their tissues when cultivated in higher concentrations of selected metals without necessarily grow. The maximum values of removal metal rates (mg m(2) day(-1)) for each metal (Cd = 0.0045, Ni = 0.0595, Pb = 0.1423 e Zn = 0.4046) are listed. We concluded that S. minima may be used as an additional tool for metals removal from effluent.
Collapse
Affiliation(s)
- Danilo Sinhei Iha
- a Departamento de Hidrobiologia, UFSCar - Universidade Federal de São Carlos, Brazil-SP
| | | |
Collapse
|
43
|
Wildemann TM, Weber LP, Siciliano SD. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats. J Appl Toxicol 2014; 35:918-26. [PMID: 25523840 DOI: 10.1002/jat.3092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 11/11/2022]
Abstract
Environmental exposure to metal mixtures in the human population is common. Mixture risk assessments are often challenging because of a lack of suitable data on the relevant mixture. A growing number of studies show an association between lead or mercury exposure and cardiovascular effects. We investigated the cardiovascular effects of single metal exposure or co-exposure to methylmercury [MeHg(I)], inorganic mercury [Hg(II)] and lead [Pb(II)]. Male Wistar rats received four different metal mixtures for 28 days through the drinking water. The ratios of the metals were based on reference and environmental exposure values. Blood and pulse pressure, cardiac output and electrical activity of the heart were selected as end-points. While exposure to only MeHg(I) increased the systolic blood pressure and decreased cardiac output, the effects were reversed with combined exposures (antagonism). In contrast to these effects, combined exposures negatively affected the electrical activity of the heart (synergism). Thus, it appears that estimates of blood total Hg levels need to be paired with estimates of what species of mercury dominate exposure as well as whether lead co-exposure is present to link total blood Hg levels to cardiovascular effects. Based on current human exposure data and our results, there may be an increased risk of cardiac events as a result of combined exposures to Hg(II), MeHg(I) and Pb(II). This increased risk needs to be clarified by analyzing lead and Hg exposure data in relation to cardiac electrical activity in epidemiological studies.
Collapse
Affiliation(s)
- Tanja M Wildemann
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada, S7N 5B3.,Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada, S7N 5A8
| | - Lynn P Weber
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada, S7N 5B3.,Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Steven D Siciliano
- Toxicology Graduate Program, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada, S7N 5B3.,Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada, S7N 5A8
| |
Collapse
|
44
|
Gastrointestinal absorption of uranium compounds--a review. Regul Toxicol Pharmacol 2014; 71:125-33. [PMID: 25263405 DOI: 10.1016/j.yrtph.2014.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/14/2014] [Accepted: 08/21/2014] [Indexed: 01/18/2023]
Abstract
Uranium occurs naturally in soil and rocks, and therefore where it is present in water-soluble form it also occurs naturally in groundwater as well as in drinking water obtained from groundwater. Animal studies suggest that the toxicity of uranium is mainly due to its damage to kidney tubular cells following exposure to soluble uranium compounds. The assessments of the absorption of uranium via the gastrointestinal tract vary, and this has consequences for regulation, in particular the derivation of e.g. drinking water limit values. Absorption rates vary according to the nature and solubility of the compound in which uranium is presented to the test animals and depending on the animal species used in the test. No differences for sex have been observed for absorption in either animals or humans. However, human biomonitoring data do show that boys excrete significantly more uranium than girls. In animal studies neonates took up more uranium than adults or older children. Nutritional status, and in particular the iron content of the diet, have a marked influence on absorption, and higher uranium levels in food intake also appear to increase the absorption rate. If the pointers to an absorption mechanism competing with iron are correct, these mechanisms could also explain the relatively high concentration and chemical toxicity of uranium in the kidneys. It is here (and in the duodenum) that divalent metal transporter 1 (DMT1), which is primarily responsible for the passage of iron (or uranium?) through the cell membranes, is most strongly expressed.
Collapse
|
45
|
Konietzka R, Heinze R, Seiwert M, Dieter HH. The ex-vivo intestinal absorption rate of uranium is a two-phase function of supply. Regul Toxicol Pharmacol 2014; 69:256-62. [DOI: 10.1016/j.yrtph.2014.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/21/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022]
|
46
|
Andrade V, Mateus ML, Santos D, Aschner M, Batoreu MC, Marreilha dos Santos AP. Arsenic and manganese alter lead deposition in the rat. Biol Trace Elem Res 2014; 158:384-91. [PMID: 24715659 PMCID: PMC4041197 DOI: 10.1007/s12011-014-9954-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/22/2023]
Abstract
Lead (Pb) continues to be a major toxic metal in the environment. Pb exposure frequently occurs in the presence of other metals, such as arsenic (As) and manganese (Mn). Continued exposure to low levels of these metals may lead to long-term toxic effects due to their accumulation in several organs. Despite the recognition that metals in a mixture may alter each other's toxicity by affecting deposition, there is dearth of information on their interactions in vivo. In this work, we investigated the effect of As and Mn on Pb tissue deposition, focusing on the kidney, brain, and liver. Wistar rats were treated with eight doses of each single metal, Pb (5 mg/Kg bw), As (60 mg/L), and Mn 10 mg/Kg bw), or the same doses in a triple metal mixture. The kidney, brain, liver, blood, and urine Pb, As, and Mn concentrations were determined by graphite furnace atomic absorption spectrophotometry. The Pb kidney, brain, and liver concentrations in the metal-mixture-treated group were significantly increased compared to the Pb-alone-treated group, being more pronounced in the kidney (5.4-fold), brain (2.5-fold), and liver (1.6-fold). Urinary excretion of Pb in the metal-mixture-treated rats significantly increased compared with the Pb-treated group, although blood Pb concentrations were analogous to the Pb-treated group. Co-treatment with As, Mn, and Pb alters Pb deposition compared to Pb alone treatment, increasing Pb accumulation predominantly in the kidney and brain. Blood Pb levels, unlike urine, do not reflect the increased Pb deposition in the kidney and brain. Taken together, the results suggest that the nephro- and neurotoxicity of "real-life" Pb exposure scenarios should be considered within the context of metal mixture exposures.
Collapse
Affiliation(s)
- V Andrade
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - ML Mateus
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - D Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 NY, USA
| | - MC Batoreu
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - AP Marreilha dos Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
47
|
Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S. Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. JOURNAL OF HAZARDOUS MATERIALS 2014; 268:124-31. [PMID: 24480523 DOI: 10.1016/j.jhazmat.2014.01.009] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/17/2013] [Accepted: 01/03/2014] [Indexed: 05/12/2023]
Abstract
Nanoscale zero valent iron (NZVI) has high adsorption capacity of As(III) and As(V), but it is limited in practical use due to its small particle size and aggregation effect. Reduce graphite oxide (RGO) has been used as a support because of its high surface area. In order to utilize the advantage of NZVI and RGO as well as to avoid the disadvantage of NZVI, we loaded NZVI onto RGO via chemical reactions in this study. The adsorption capacity of As(III) and As(V), as determined from the Langmuir adsorption isotherms in batch experiments, was 35.83mgg(-1) and 29.04mgg(-1), respectively. And the adsorption kinetics fitted well with pseudo-second-order model. The residual concentration was found to meet the standard of WHO after the samples were treated with 0.4gL(-1) NZVI-RGO when the initial concentration of As(III) and As(V) were below 8ppm and 3ppm. Especially, when the initial concentration of As(III) was below 3ppm, the residual concentration was within 1ppb; whereas, the residual concentration was undetected when the initial concentration of As(III) was 1ppm.
Collapse
Affiliation(s)
- Can Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Hanjin Luo
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Zilong Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Yan Wu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Jian Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Shaowei Chen
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
48
|
Yang M, Jiang L, Huang H, Zeng S, Qiu F, Yu M, Li X, Wei S. Dietary exposure to aluminium and health risk assessment in the residents of Shenzhen, China. PLoS One 2014; 9:e89715. [PMID: 24594670 PMCID: PMC3940618 DOI: 10.1371/journal.pone.0089715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Although there are great changes of dietary in the past few decades in China, few are known about the aluminium exposure in Chinese diet. The aim of this study is to systematically evaluate the dietary aluminium intake level in residents of Shenzhen, China. A total of 853 persons from 244 household were investigated their diet by three days food records. Finally, 149 kinds of foods in 17 food groups were selected to be the most consumed foods. From them, 1399 food samples were collected from market to test aluminium concentration. High aluminium levels were found in jellyfish (median, 527.5 mg/kg), fried twisted cruller (median, 466.0 mg/kg), shell (median, 107.1 mg/kg). The Shenzhen residents' average dietary aluminium exposure was estimated at 1.263 mg/kg bw/week which is lower than the PTWI (provisional tolerable weekly intake). But 0-2 and 3-13 age groups have the highest aluminium intake exceeding the PTWI (3.356 mg/kg bw/week and 3.248 mg/kg bw/week) than other age groups. And the main dietary aluminium exposure sources are fried twisted cruller, leaf vegetables and bean products. Our study suggested that even three decades rapid economy development, children in Shenzhen still have high dietary aluminium exposure risk. How to control high dietary aluminium exposure still is a great public health challenge in Shenzhen, China.
Collapse
Affiliation(s)
- Mei Yang
- Department of Health Surveillance and Management, Futian District Center for Disease Control and Prevention of Shenzhen, Shenzhen, Guangdong, China
- Department of Laboratory, Futian District Center for Disease Control and Prevention of Shenzhen, Shenzhen, Guangdong, China
| | - Lixin Jiang
- Department of Health Surveillance and Management, Futian District Center for Disease Control and Prevention of Shenzhen, Shenzhen, Guangdong, China
| | - Huiping Huang
- Department of Health Surveillance and Management, Futian District Center for Disease Control and Prevention of Shenzhen, Shenzhen, Guangdong, China
| | - Shengbo Zeng
- Department of Laboratory, Futian District Center for Disease Control and Prevention of Shenzhen, Shenzhen, Guangdong, China
| | - Fen Qiu
- Department of Laboratory, Futian District Center for Disease Control and Prevention of Shenzhen, Shenzhen, Guangdong, China
| | - Miao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaorong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
49
|
Halatek T, Sinczuk-Walczak H, Janasik B, Trzcinka-Ochocka M, Winnicka R, Wasowicz W. Health effects and arsenic species in urine of copper smelter workers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:787-797. [PMID: 24679086 DOI: 10.1080/10934529.2014.882207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this study was to compare indices of exposure in workers employed at different work posts in a copper smelter plant using neurophysiological tests and to evaluate the relationship between urinary arsenic species with the aid of sensitive respiratory and renal biomarkers. We have attempted to elucidate the impact of different arsenic speciation forms on the observed health effects. We focused on the workers (n = 45) exposed to atmospheres containing specific diverse mixtures of metals (such as those occurring in Departments of Furnaces, Lead and Electrolysis) compared to controls (n = 16). Subjective symptoms from the central (CNS) and the peripheral (PNS) nervous system were recorded and visual evoked potential (VEP), electroneurography (ENeG) and electroencephalography (EEG) curves were analysed. Levels of airborne lead (PbA), zinc (ZnA) and copper (CuA) and Pb levels in blood (PbB) and the relationships between airborne As concentrations (AsA) and the urinary levels of the inorganic (iAs); As(+3), As(+5) and the organic; methylarsonate (MMA(V)), dimethylarsinate (DMA(V)) and arsenobetaine (AsB) arsenic species were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Effects of exposure were expressed in terms of biomarker levels: Clara cell protein (CC16) in serum as early pulmonary biomarker and β2-microglobulin (β2M) in urine and serum, retinol binding protein (RBP) as renal markers, measured by sensitive latex-immunoassay (LIA). Abnormal results of neurophysiological tests, VEP, EEG and ENeG showed dominant subclinical effects in CNS and PNS of workers from Departments of Lead and Furnace. In group of smelters from Departments of Furnace exposed to arsenic above current TLV, excreted arsenic species As(+3) and As(+5) seemed to reduce the level of Clara cell protein (CC16), thereby reducing anti-inflammatory potential of the lungs and increasing the levels of renal biomarker (β2M) and copper in urine (CuU). The study confirmed deleterious arsenic effects to the kidney by increased levels of low-molecular weight protein in urine and the extent of the renal copper accumulation/excretion. The results of our work also support the usefulness of application of the sensitive neurophysiologic tests, such as VEP, EEG and ENeG, for the detection of early subclinical effects of the exposure of the nervous system in copper smelters.
Collapse
Affiliation(s)
- Tadeusz Halatek
- a Department of Toxicology and Carcinogenesis , Nofer Institute of Occupational Medicine , Lodz , Poland
| | | | | | | | | | | |
Collapse
|
50
|
Senior CL, Morris W, Lewandowski TA. Emissions and risks associated with oxyfuel combustion: state of the science and critical data gaps. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:832-843. [PMID: 23926852 DOI: 10.1080/10962247.2013.791892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED Oxyfuel combustion is a promising technology that may greatly facilitate carbon capture and sequestration by increasing the relative CO2 content of the combustion emission stream. However, the potential effect of enhanced oxygen combustion conditions on emissions of criteria and hazardous air pollutants (e.g., acid gases, particulates, metals and organics) is not well studied. It is possible that combustion under oxyfuel conditions could produce emissions posing different risks than those currently being managed by the power industry (e.g., by changing the valence state of metals). The data available for addressing these concerns are quite limited and are typically derived from laboratory-scale or pilot-scale tests. A review of the available data does suggest that oxyfuel combustion may decrease the air emissions of some pollutants (e.g., SO2, NO(x), particulates) whereas data for other pollutants are too limited to draw any conclusions. The oxy-combustion systems that have been proposed to date do not have a conventional "stack" and combustion flue gas is treated in such a way that solid or liquid waste streams are the major outputs. Use of this technology will therefore shift emissions from air to solid or liquid waste streams, but the risk management implications of this potential change have yet to be assessed. Truly useful studies of the potential effects of oxyfuel combustion on power plant emissions will require construction of integrated systems containing a combustion system coupled to a CO2 processing unit. Sampling and analysis to assess potential emission effects should be an essential part of integrated system tests. IMPLICATIONS Oxyfuel combustion may facilitate carbon capture and sequestration by increasing the relative CO2 content of the combustion emission stream. However, the potential effect of enhanced oxygen combustion conditions on emissions of criteria and hazardous air pollutants has not been well studied. Combustion under oxyfuel conditions could produce emissions posing different risks than those currently being managed by the power industry. Therefore, before moving further with oxyfuel combustion as a new technology, it is appropriate to summarize the current understanding of potential emissions risk and to identify data gaps as priorities for future research.
Collapse
|