1
|
Bairwa SC, Shaw CA, Kuo M, Yoo J, Tomljenovic L, Eidi H. Cytokines profile in neonatal and adult wild-type mice post-injection of U. S. pediatric vaccination schedule. Brain Behav Immun Health 2021; 15:100267. [PMID: 34589773 PMCID: PMC8474652 DOI: 10.1016/j.bbih.2021.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction A recent study from our laboratory demonstrated a number of neurobehavioral abnormalities in mice colony injected with a mouse-weight equivalent dose of all vaccines that are administered to infants in their first 18 months of life according to the U. S. pediatric vaccination schedule. Cytokines have been studied extensively as blood immune and inflammatory biomarkers, and their association with neurodevelopmental disorders. Given the importance of cytokines in early neurodevelopment, we aimed to investigate the potential post-administration effects of the U. S. pediatric vaccines on circulatory cytokines in a mouse model. In the current study, cytokines have been assayed at early and late time points in mice vaccinated early in postnatal life and compared with placebo controls. Materials and methods Newborn mouse pups were divided into three groups: i) vaccine (V1), ii) vaccine × 3 (V3) and iii) placebo control. V1 group was injected with mouse weight-equivalent of the current U. S. pediatric vaccine schedule. V3 group was injected with same vaccines but at triple the dose and the placebo control was injected with saline. Pups were also divided according to the sampling age into two main groups: acute- and chronic-phase group. Blood samples were collected at postnatal day (PND) 23, two days following vaccine schedule for the acute-phase group or at 67 weeks post-vaccination for the chronic-phase groups. Fifteen cytokines were analyzed: GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, MCP-1, TNF-α, and VEGF-A. Wilcoxon Rank Sum test or unpaired Student's t-test was performed where applicable. Results IL-5 levels in plasma were significantly elevated in the V1 and V3 group compared with the control only in the acute-phase group. The elevation of IL-5 levels in the two vaccine groups were significant irrespective of whether the sexes were combined or analyzed separately. Other cytokines (VEGF-A, TNF-α, IL-10, MCP-1, GM-CSF, IL-6, and IL-13) were also impacted, although to a lesser extent and in a sex-dependent manner. In the acute-phase group, females showed a significant increase in IL-10 and MCP-1 levels and a decrease in VEGF-A levels in both V1 and V3 group compared to controls. In the acute-phase, a significant increase in MCP-1 levels in V3 group and CM-CSF levels in V1 and V3 group and decrease in TNF-α levels in V1 group were observed in treated males as compared with controls. In chronic-phase females, levels of VEGF-A in V1 and V3 group, TNF-α in V3 group, and IL-13 in V1 group were significantly decreased in contrast with controls. In chronic-phase males, TNF-α levels were significantly increased in V1 group and IL-6 levels decreased in V3 group in comparison to controls. The changes in levels of most tested cytokines were altered between the early and the late postnatal assays. Conclusions IL-5 levels significantly increased in the acute-phase of the treatment in the plasma of both sexes that were subjected to V1 and V3 injections. These increases had diminished by the second test assayed at week 67. These results suggest that a profound, albeit transient, effect on cytokine levels may be induced by the whole vaccine administration supporting our recently published observations regarding the behavioral abnormalities in the same mice. These observations support the view that the administration of whole pediatric vaccines in a neonatal period may impact at least short-term CNS functions in mice.
Collapse
Affiliation(s)
- S C Bairwa
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C A Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Kuo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - L Tomljenovic
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Eidi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,French Agency for Veterinary Medicinal Products (ANMV) - French Agency for Food, Environmental and Occupational Health Safety (ANSES), Fougères, France
| |
Collapse
|
2
|
Eidi H, Yoo J, Bairwa SC, Kuo M, Sayre EC, Tomljenovic L, Shaw CA. Early postnatal injections of whole vaccines compared to placebo controls: Differential behavioural outcomes in mice. J Inorg Biochem 2020; 212:111200. [PMID: 33039918 DOI: 10.1016/j.jinorgbio.2020.111200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
The present study was designed to evaluate the possible effects of the paediatric vaccination schedule in the United States on the central nervous system in a murine model. We compared the impact of treatment with the whole vaccines versus true placebo control. Seventy-six pups were divided into three groups: two vaccinated groups and unvaccinated control. The two vaccinated groups were treated between 7 and 21 post-natal days either with one or three times of the vaccine doses per body weight as used in children between newborn and eighteen months of age. The post-vaccination development, neuromotor behaviours and neurobehavioural abnormalities (NBAs) were evaluated in all mouse groups during the 67 post-natal weeks of mouse age. Mouse body weight was affected only in the vaccinated females compared to males and control. Some NBAs such as decreased sociability, increased anxiety-like behaviours, and alteration of visual-spatial learning and memory were observed in vaccinated male and female mice compared to controls. The present study also shows a slower acquisition of some neonatal reflexes in vaccinated female mice compared to vaccinated males and controls. The observed neurodevelopmental alterations did not show a linear relationship with vaccine dose, suggesting that the single dose gave a saturated response. The outcomes seemed to be sex-dependent and transient with age.
Collapse
Affiliation(s)
- Housam Eidi
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; French agency for veterinary medicinal products (ANMV) - French agency for food, environmental and occupational health safety (ANSES), Fougères, France.
| | - Janice Yoo
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suresh C Bairwa
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Kuo
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Lucija Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Shaw
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Dórea JG. Low-dose Thimerosal (ethyl-mercury) is still used in infants` vaccines: Should we be concerned with this form of exposure? J Trace Elem Med Biol 2018; 49:134-139. [PMID: 29895363 DOI: 10.1016/j.jtemb.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022]
Abstract
In developing countries, Thimerosal-containing vaccines (TCV) are the main causes of organic Hg exposure for newborns, neonates, and infants immunized with TCV. This article addresses early-life exposure to this unique organic mercury compound (ethylmercury-EtHg) and the risks of its exposure. English language studies pertaining to Thimerosal/EtHg toxicity and exposure during early life were searched in PubMed; and, those publications judged to be relevant to the topic of this review were selected. The risk from the neurotoxic effects of pre- and post-natal Hg exposures depend, in part, on aggravating or attenuating environmental and/or genetic-associated factors. Health authorities in charge of controlling infectious disease dismiss the toxicology of mercury (immunological and subtle neurological effects as insignificant) related to low-dose Thimerosal. The review addresses the evidence that brings into question the safety of Thimerosal that is still present in vaccines given to pregnant women, infants, and children in developing countries, and recognizes the ethical imperative to extend the use of Thimerosal-free vaccines to developing countries, not just developed countries.
Collapse
Affiliation(s)
- José G Dórea
- Health Sciences, Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
4
|
Bauman MD, Schumann CM. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Exp Neurol 2017; 299:252-265. [PMID: 28774750 DOI: 10.1016/j.expneurol.2017.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 12/28/2022]
Abstract
Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD.
Collapse
Affiliation(s)
- M D Bauman
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA; California National Primate Research Center, University of California, Davis, USA.
| | - C M Schumann
- The UC Davis MIND Institute, University of California, Davis, USA; Department of Psychiatry and Behavioral Sciences, University of California, Davis, USA
| |
Collapse
|
5
|
Dórea JG. Low-dose Thimerosal in pediatric vaccines: Adverse effects in perspective. ENVIRONMENTAL RESEARCH 2017; 152:280-293. [PMID: 27816865 DOI: 10.1016/j.envres.2016.10.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Vaccines are prophylactics used as the first line of intervention to prevent, control and eradicate infectious diseases. Young children (before the age of six months) are the demographic group most exposed to recommended/mandatory vaccines preserved with Thimerosal and its metabolite ethylmercury (EtHg). Particularly in the less-developed countries, newborns, neonates, and young children are exposed to EtHg because it is still in several of their pediatric vaccines and mothers are often immunized with Thimerosal-containing vaccines (TCVs) during pregnancy. While the immunogenic component of the product has undergone more rigorous testing, Thimerosal, known to have neurotoxic effects even at low doses, has not been scrutinized for the limit of tolerance alone or in combination with adjuvant-Al during immaturity or developmental periods (pregnant women, newborns, infants, and young children). Scientific evidence has shown the potential hazards of Thimerosal in experiments that modeled vaccine-EtHg concentrations. Observational population studies have revealed uncertainties related to neurological effects. However, consistently, they showed a link of EtHg with risk of certain neurodevelopment disorders, such as tic disorder, while clearly revealing the benefits of removing Thimerosal from children's vaccines (associated with immunological reactions) in developed countries. So far, only rich countries have benefited from withdrawing the risk of exposing young children to EtHg. Regarding Thimerosal administered to the very young, we have sufficient studies that characterize a state of uncertainty: the collective evidence strongly suggests that Thimerosal exposure is associated with adverse neurodevelopmental outcomes. It is claimed that the continued use of Thimerosal in the less-developed countries is due to the cost to change to another preservative, such as 2-phenoxyethanol. However, the estimated cost increase per child in the first year of life is lower than estimated lifetime cost of caring for a child with a neurodevelopmental disorder, such tic disorder. The evidence indicates that Thimerosal-free vaccine options should be made available in developing countries.
Collapse
Affiliation(s)
- José G Dórea
- Professor Emeritus, Faculty of Health Sciences, Universidade de Brasilia, 70919-970 Brasilia, DF, Brazil.
| |
Collapse
|
6
|
Carneiro MFH, Morais C, Small DM, Vesey DA, Barbosa F, Gobe GC. Thimerosal induces apoptotic and fibrotic changes to kidney epithelial cells in vitro. ENVIRONMENTAL TOXICOLOGY 2015; 30:1423-1433. [PMID: 24942245 DOI: 10.1002/tox.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Thimerosal is an ethyl mercury-containing compound used mainly in vaccines as a bactericide. Although the kidney is a key target for mercury toxicity, thimerosal nephrotoxicity has not received the same attention as other mercury species. The aim of this study was to determine the potential cytotoxic mechanisms of thimerosal on human kidney cells. Human kidney proximal tubular epithelial (HK2) cells were exposed for 24 h to thimerosal (0-2 µM), and assessed for cell viability, apoptosis, and cell proliferation; expression of proteins Bax, nuclear factor-κB subunits, and transforming growth factor-β1 (TGFβ1); mitochondrial health (JC-1, MitoTracker Red CMXRos); and fibronectin levels (enzyme-linked immunosorbent assay). Thimerosal diminished HK2 cell viability and mitosis, promoted apoptosis, impaired the mitochondrial permeability transition, enhanced Bax and TGFβ1 expression, and augmented fibronectin secretion. This is the first report about kidney cell death and pro-fibrotic mechanisms promoted by thimerosal. Collectively, these in vitro results demonstrate that (1) thimerosal induces kidney epithelial cell apoptosis via upregulating Bax and the mitochondrial apoptotic pathway, and (2) thimerosal is a potential pro-fibrotic agent in human kidney cells. We suggest that new evidence on toxicity as well as continuous surveillance in terms of fibrogenesis is required concerning thimerosal use.
Collapse
Affiliation(s)
- Maria Fernanda Hornos Carneiro
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, s/n, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Christudas Morais
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - David M Small
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| | - Fernando Barbosa
- Laboratório de Toxicologia e Essencialidade de Metais, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Do Café, s/n, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Glenda C Gobe
- Centre for Kidney Disease Research, School of Medicine, University of Queensland, Translational Research Institute, Kent Street, Woolloongabba, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Guimarães LE, Baker B, Perricone C, Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol Res 2015; 100:190-209. [PMID: 26275795 PMCID: PMC7129276 DOI: 10.1016/j.phrs.2015.08.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
Abstract
Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Luísa Eça Guimarães
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Britain Baker
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Incumbent of the Laura Schwarz-kipp chair for research of autoimmune diseases, Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| |
Collapse
|
8
|
Geier DA, Kern JK, Hooker BS, King PG, Sykes LK, Geier MR. A longitudinal cohort study of the relationship between Thimerosal-containing hepatitis B vaccination and specific delays in development in the United States: Assessment of attributable risk and lifetime care costs. J Epidemiol Glob Health 2015; 6:105-18. [PMID: 26166425 PMCID: PMC7320444 DOI: 10.1016/j.jegh.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/04/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence suggests a link between mercury (Hg) exposure from Thimerosal-containing vaccines and specific delays in development. A hypothesis-testing longitudinal cohort study (n = 49,835) using medical records in the Vaccine Safety Datalink (VSD) was undertaken to evaluate the relationship between exposure to Hg from Thimerosal-containing hepatitis B vaccines (T-HBVs) administered at specific intervals in the first 6 months of life and specific delays in development [International Classification of Disease, 9th revision (ICD-9): 315.xx] among children born between 1991 and 1994 and continuously enrolled from birth for at least 5.81 years. Infants receiving increased Hg doses from T-HBVs administered within the first month, the first 2 months, and the first 6 months of life were significantly more likely to be diagnosed with specific delays in development than infants receiving no Hg doses from T-HBVs. During the decade in which T-HBVs were routinely recommended and administered to US infants (1991–2001), an estimated 0.5–1 million additional US children were diagnosed with specific delays in development as a consequence of 25 μg or 37.5 μg organic Hg from T-HBVs administered within the first 6 months of life. The resulting lifetime costs to the United States may exceed $1 trillion.
Collapse
Affiliation(s)
- David A Geier
- Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA
| | - Janet K Kern
- Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA.
| | - Brian S Hooker
- Biology Department, Simpson University, Redding, CA, USA
| | | | | | - Mark R Geier
- Institute of Chronic Illnesses, Inc, Silver Spring, MD, USA
| |
Collapse
|
9
|
Curtis B, Liberato N, Rulien M, Morrisroe K, Kenney C, Yutuc V, Ferrier C, Marti CN, Mandell D, Burbacher TM, Sackett GP, Hewitson L. Examination of the safety of pediatric vaccine schedules in a non-human primate model: assessments of neurodevelopment, learning, and social behavior. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:579-589. [PMID: 25690930 PMCID: PMC4455585 DOI: 10.1289/ehp.1408257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND In the 1990s, the mercury-based preservative thimerosal was used in most pediatric vaccines. Although there are currently only two thimerosal-containing vaccines (TCVs) recommended for pediatric use, parental perceptions that vaccines pose safety concerns are affecting vaccination rates, particularly in light of the much expanded and more complex schedule in place today. OBJECTIVES The objective of this study was to examine the safety of pediatric vaccine schedules in a non-human primate model. METHODS We administered vaccines to six groups of infant male rhesus macaques (n = 12-16/group) using a standardized thimerosal dose where appropriate. Study groups included the recommended 1990s Pediatric vaccine schedule, an accelerated 1990s Primate schedule with or without the measles-mumps-rubella (MMR) vaccine, the MMR vaccine only, and the expanded 2008 schedule. We administered saline injections to age-matched control animals (n = 16). Infant development was assessed from birth to 12 months of age by examining the acquisition of neonatal reflexes, the development of object concept permanence (OCP), computerized tests of discrimination learning, and infant social behavior. Data were analyzed using analysis of variance, multilevel modeling, and survival analyses, where appropriate. RESULTS We observed no group differences in the acquisition of OCP. During discrimination learning, animals receiving TCVs had improved performance on reversal testing, although some of these same animals showed poorer performance in subsequent learning-set testing. Analysis of social and nonsocial behaviors identified few instances of negative behaviors across the entire infancy period. Although some group differences in specific behaviors were reported at 2 months of age, by 12 months all infants, irrespective of vaccination status, had developed the typical repertoire of macaque behaviors. CONCLUSIONS This comprehensive 5-year case-control study, which closely examined the effects of pediatric vaccines on early primate development, provided no consistent evidence of neurodevelopmental deficits or aberrant behavior in vaccinated animals.
Collapse
Affiliation(s)
- Britni Curtis
- Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Geier DA, Kern JK, Hooker BS, King PG, Sykes LK, Geier MR. Thimerosal-containing hepatitis B vaccination and the risk for diagnosed specific delays in development in the United States: a case-control study in the vaccine safety datalink. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2014; 6:519-31. [PMID: 25489565 PMCID: PMC4215490 DOI: 10.4103/1947-2714.143284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Within the first 3 years of life, the brain develops rapidly. Its development is characterized by critical developmental periods for speech, vision, hearing, language, balance, etc.; and alteration in any of the processes occurring in those critical periods can lead to specific delays in development. Aims: The present study evaluated the potential toxic effects of organic-mercury exposure from Thimerosal (49.55% mercury by weight) in childhood vaccines and its hypothesized possible relationship with specific delays in development. Materials and Methods: A hypothesis testing case-control study was undertaken to evaluate the relationship between exposure to Thimerosal-containing hepatitis B vaccines administered at specific intervals in the first 6 months among cases diagnosed with specific delays in development and controls born between 1991-2000, utilizing data in the Vaccine Safety Datalink database. Results: Cases were significantly more likely than controls to have received increased organic-mercury from Thimerosal-containing hepatitis B vaccine administered in the first, second, and sixth month of life. Conclusion: Though routine childhood vaccination may be an important public health tool to reduce the morbidity and mortality associated with infectious diseases, the present study supports an association between increasing organic-mercury exposure from Thimerosal-containing childhood vaccines and the subsequent risk of specific delays in development among males and females.
Collapse
Affiliation(s)
- David A Geier
- Institute of Chronic Illnesses, Inc, Silver Spring, Maryland, USA
| | - Janet K Kern
- Institute of Chronic Illnesses, Inc, Silver Spring, Maryland, USA ; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brian S Hooker
- Biology Department, Simpson University, Redding, California, USA
| | | | | | - Mark R Geier
- Institute of Chronic Illnesses, Inc, Silver Spring, Maryland, USA
| |
Collapse
|
11
|
Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 2014; 56:304-16. [PMID: 23609067 DOI: 10.1007/s12026-013-8403-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have examined the neurotoxicity of aluminum in humans and animals under various conditions, following different routes of administration, and provide an overview of the various associated disease states. The literature demonstrates clearly negative impacts of aluminum on the nervous system across the age span. In adults, aluminum exposure can lead to apparently age-related neurological deficits resembling Alzheimer's and has been linked to this disease and to the Guamanian variant, ALS-PDC. Similar outcomes have been found in animal models. In addition, injection of aluminum adjuvants in an attempt to model Gulf War syndrome and associated neurological deficits leads to an ALS phenotype in young male mice. In young children, a highly significant correlation exists between the number of pediatric aluminum-adjuvanted vaccines administered and the rate of autism spectrum disorders. Many of the features of aluminum-induced neurotoxicity may arise, in part, from autoimmune reactions, as part of the ASIA syndrome.
Collapse
|
12
|
Burbacher TM, Grant KS, Worlein J, Ha J, Curnow E, Juul S, Sackett GP. Four decades of leading-edge research in the reproductive and developmental sciences: the Infant Primate Research Laboratory at the University of Washington National Primate Research Center. Am J Primatol 2013; 75:1063-83. [PMID: 23873400 PMCID: PMC5452618 DOI: 10.1002/ajp.22175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
The Infant Primate Research Laboratory (IPRL) was established in 1970 at the University of Washington as a visionary project of Dr. Gene (Jim) P. Sackett. Supported by a collaboration between the Washington National Primate Research Center and the Center on Human Development and Disability, the IPRL operates under the principle that learning more about the causes of abnormal development in macaque monkeys will provide important insights into the origins and treatment of childhood neurodevelopmental disabilities. Over the past 40 years, a broad range of research projects have been conducted at the IPRL. Some have described the expression of normative behaviors in nursery-reared macaques while others have focused on important biomedical themes in child health and development. This article details the unique scientific history of the IPRL and the contributions produced by research conducted in the laboratory. Past and present investigations have explored the topics of early rearing effects, low-birth-weight, prematurity, birth injury, epilepsy, prenatal neurotoxicant exposure, viral infection (pediatric HIV), diarrheal disease, vaccine safety, and assisted reproductive technologies. Data from these studies have helped advance our understanding of both risk and resiliency in primate development. New directions of research at the IPRL include the production of transgenic primate models using our embryonic stem cell-based technology to better understand and treat heritable forms of human intellectual disabilities such as fragile X.
Collapse
Affiliation(s)
- Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195 USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - Kimberly S. Grant
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98195 USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - Julie Worlein
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - James Ha
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
- Department of Psychology, School of Arts and Sciences, University of Washington, Seattle, WA, 98195 USA
| | - Eliza Curnow
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
| | - Sandra Juul
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, 98195 USA
| | - Gene P. Sackett
- Center on Human Development and Disability, University of Washington, Seattle, WA, 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195 USA
- Department of Psychology, School of Arts and Sciences, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
13
|
Mrozek-Budzyn D, Majewska R, Kieltyka A, Augustyniak M. Neonatal exposure to Thimerosal from vaccines and child development in the first 3years of life. Neurotoxicol Teratol 2012; 34:592-7. [DOI: 10.1016/j.ntt.2012.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 11/27/2022]
|
14
|
Duszczyk-Budhathoki M, Olczak M, Lehner M, Majewska MD. Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: protective role of dehydroepiandrosterone sulfate. Neurochem Res 2012; 37:436-47. [PMID: 22015977 PMCID: PMC3264864 DOI: 10.1007/s11064-011-0630-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/27/2011] [Accepted: 10/04/2011] [Indexed: 12/21/2022]
Abstract
Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10-14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity.
Collapse
Affiliation(s)
- Michalina Duszczyk-Budhathoki
- Marie Curie Chairs Program at the Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Mieszko Olczak
- Marie Curie Chairs Program at the Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Department of Forensic Medicine, Medical University of Warsaw, Oczki 1 str., 02-007 Warsaw, Poland
| | - Malgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Maria Dorota Majewska
- Marie Curie Chairs Program at the Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Department of Biology and Environmental Science, University of Cardinal Stefan Wyszynski, Wóycickiego Str. 1/3, 01-815 Warsaw, Poland
| |
Collapse
|
15
|
Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus 2012; 21:223-30. [DOI: 10.1177/0961203311430221] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune challenges during early development, including those vaccine-induced, can lead to permanent detrimental alterations of the brain and immune function. Experimental evidence also shows that simultaneous administration of as little as two to three immune adjuvants can overcome genetic resistance to autoimmunity. In some developed countries, by the time children are 4 to 6 years old, they will have received a total of 126 antigenic compounds along with high amounts of aluminum (Al) adjuvants through routine vaccinations. According to the US Food and Drug Administration, safety assessments for vaccines have often not included appropriate toxicity studies because vaccines have not been viewed as inherently toxic. Taken together, these observations raise plausible concerns about the overall safety of current childhood vaccination programs. When assessing adjuvant toxicity in children, several key points ought to be considered: (i) infants and children should not be viewed as “small adults” with regard to toxicological risk as their unique physiology makes them much more vulnerable to toxic insults; (ii) in adult humans Al vaccine adjuvants have been linked to a variety of serious autoimmune and inflammatory conditions (i.e., “ASIA”), yet children are regularly exposed to much higher amounts of Al from vaccines than adults; (iii) it is often assumed that peripheral immune responses do not affect brain function. However, it is now clearly established that there is a bidirectional neuro-immune cross-talk that plays crucial roles in immunoregulation as well as brain function. In turn, perturbations of the neuro-immune axis have been demonstrated in many autoimmune diseases encompassed in “ASIA” and are thought to be driven by a hyperactive immune response; and (iv) the same components of the neuro-immune axis that play key roles in brain development and immune function are heavily targeted by Al adjuvants. In summary, research evidence shows that increasing concerns about current vaccination practices may indeed be warranted. Because children may be most at risk of vaccine-induced complications, a rigorous evaluation of the vaccine-related adverse health impacts in the pediatric population is urgently needed.
Collapse
Affiliation(s)
- L Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - CA Shaw
- Departments of Ophthalmology and Visual Sciences and Experimental Medicine and the Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Olczak M, Duszczyk M, Mierzejewski P, Meyza K, Majewska MD. Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats. Behav Brain Res 2011; 223:107-18. [DOI: 10.1016/j.bbr.2011.04.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 11/15/2022]
|
17
|
Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 2011; 105:1489-99. [PMID: 22099159 DOI: 10.1016/j.jinorgbio.2011.08.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/13/2011] [Accepted: 08/14/2011] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are serious multisystem developmental disorders and an urgent global public health concern. Dysfunctional immunity and impaired brain function are core deficits in ASD. Aluminum (Al), the most commonly used vaccine adjuvant, is a demonstrated neurotoxin and a strong immune stimulator. Hence, adjuvant Al has the potential to induce neuroimmune disorders. When assessing adjuvant toxicity in children, two key points ought to be considered: (i) children should not be viewed as "small adults" as their unique physiology makes them much more vulnerable to toxic insults; and (ii) if exposure to Al from only few vaccines can lead to cognitive impairment and autoimmunity in adults, is it unreasonable to question whether the current pediatric schedules, often containing 18 Al adjuvanted vaccines, are safe for children? By applying Hill's criteria for establishing causality between exposure and outcome we investigated whether exposure to Al from vaccines could be contributing to the rise in ASD prevalence in the Western world. Our results show that: (i) children from countries with the highest ASD prevalence appear to have the highest exposure to Al from vaccines; (ii) the increase in exposure to Al adjuvants significantly correlates with the increase in ASD prevalence in the United States observed over the last two decades (Pearson r=0.92, p<0.0001); and (iii) a significant correlation exists between the amounts of Al administered to preschool children and the current prevalence of ASD in seven Western countries, particularly at 3-4 months of age (Pearson r=0.89-0.94, p=0.0018-0.0248). The application of the Hill's criteria to these data indicates that the correlation between Al in vaccines and ASD may be causal. Because children represent a fraction of the population most at risk for complications following exposure to Al, a more rigorous evaluation of Al adjuvant safety seems warranted.
Collapse
Affiliation(s)
- Lucija Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, 828 W. 10th Ave, Vancouver, BC, Canada V5Z 1L8.
| | | |
Collapse
|
18
|
Garrecht M, Austin DW. The plausibility of a role for mercury in the etiology of autism: a cellular perspective. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2011; 93:1251-1273. [PMID: 22163375 PMCID: PMC3173748 DOI: 10.1080/02772248.2011.580588] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/10/2011] [Indexed: 05/23/2023]
Abstract
Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed.
Collapse
Affiliation(s)
- Matthew Garrecht
- Swinburne Autism Bio-Research Initiative, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - David W. Austin
- Swinburne Autism Bio-Research Initiative, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
19
|
Dórea JG. Integrating Experimental (In Vitro and In Vivo) Neurotoxicity Studies of Low-dose Thimerosal Relevant to Vaccines. Neurochem Res 2011; 36:927-38. [DOI: 10.1007/s11064-011-0427-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2011] [Indexed: 12/01/2022]
|
20
|
Delong G. A positive association found between autism prevalence and childhood vaccination uptake across the U.S. population. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:903-916. [PMID: 21623535 DOI: 10.1080/15287394.2011.573736] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The reason for the rapid rise of autism in the United States that began in the 1990s is a mystery. Although individuals probably have a genetic predisposition to develop autism, researchers suspect that one or more environmental triggers are also needed. One of those triggers might be the battery of vaccinations that young children receive. Using regression analysis and controlling for family income and ethnicity, the relationship between the proportion of children who received the recommended vaccines by age 2 years and the prevalence of autism (AUT) or speech or language impairment (SLI) in each U.S. state from 2001 and 2007 was determined. A positive and statistically significant relationship was found: The higher the proportion of children receiving recommended vaccinations, the higher was the prevalence of AUT or SLI. A 1% increase in vaccination was associated with an additional 680 children having AUT or SLI. Neither parental behavior nor access to care affected the results, since vaccination proportions were not significantly related (statistically) to any other disability or to the number of pediatricians in a U.S. state. The results suggest that although mercury has been removed from many vaccines, other culprits may link vaccines to autism. Further study into the relationship between vaccines and autism is warranted.
Collapse
Affiliation(s)
- Gayle Delong
- Department of Economics and Finance, Baruch College/City University of New York, New York, New York, USA.
| |
Collapse
|