1
|
Arslan A, Aygun YZ, Turkmen M, Celiktas N, Mert M. Combining non-destructive devices and multivariate analysis as a tool to quantify the fatty acid profiles of linseed genotypes. Talanta 2025; 281:126798. [PMID: 39241643 DOI: 10.1016/j.talanta.2024.126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Linseed (Linum usitatissimum L.) and linseed oil, with a fatty acid profile rich in both macro and micro elements, are recognized as functional foods due to their valuable positive effects on health. Fatty acids composition (FAC) is a key indicator in assessing the quality of linseeds. The FAC of linseed is typically determined using chromatographic methods, yielding highly accurate results. However, chromatographic methods entail drawbacks such as requiring pre-chemical processes, generating chemical waste, and being both expensive and time-consuming, similar to chemical analyses. This study focused on the feasibility of colorimeter and FT-NIRS data to determine the FAC (%), protein (%) and neutral detergent fiber (NDF %) in linseed samples. By employing the PLSR analysis based on FT-NIRS, it was determined that the ratios of stearic (R2val = 0.74, RMSEP = 0.09 %), oleic (R2val = 0.75, RMSEP = 0.26 %), linoleic (R2val = 0.85, RMSEP = 0.58 %), linolenic (R2val = 0.71, RMSEP = 1.07 %), 8,11,14 eicosatrienoic (R2val = 0.77, RMSEP = 0.02 %), margaric (R2val = 0.71, RMSEP = 0.01 %), myristic (R2val = 0.75, RMSEP = 0.02 %), and behenic (R2val = 0.74, RMSEP = 1.12 %) in linseed could be successfully predicted. Furthermore, results demonstrated that the protein (R2val = 0.87, RMSEP = 0.9 %) and NDF (R2val = 0.90, RMSEP = 0.6 %) content in linseeds can be successfully predicted. PLSR demonstrated that FT-NIRS had relatively higher predictive capability compared to color models.
Collapse
Affiliation(s)
- Aysel Arslan
- Department of Biosystems Engineering, Faculty of Agriculture, Malatya Turgut Özal University, 44000, Battalgazi, Malatya, Turkiye.
| | - Yusuf Ziya Aygun
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31040, Antakya, Hatay, Turkiye.
| | - Musa Turkmen
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31040, Antakya, Hatay, Turkiye.
| | - Nafiz Celiktas
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31040, Antakya, Hatay, Turkiye.
| | - Mehmet Mert
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31040, Antakya, Hatay, Turkiye.
| |
Collapse
|
2
|
Batool I, Altemimi AB, Munir S, Imran S, Khalid N, Khan MA, Abdi G, Saeeduddin M, Abid M, Aadil RM. Exploring flaxseed's potential in enhancing bone health: Unveiling osteo-protective properties. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 15:101018. [DOI: 10.1016/j.jafr.2024.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Chen G, Chen Y, Hong J, Gao J, Xu Z. Secoisolariciresinol diglucoside regulates estrogen receptor expression to ameliorate OVX-induced osteoporosis. J Orthop Surg Res 2023; 18:792. [PMID: 37875947 PMCID: PMC10594807 DOI: 10.1186/s13018-023-04284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE Secoisolariciresinol diglucoside (SDG) is a phytoestrogen that has been reported to improve postmenopausal osteoporosis (PMOP) caused by estrogen deficiency. In our work, we aimed to investigate the mechanism of SDG in regulating the expressions of ERs on PMOP model rats. METHODS Ovariectomization (OVX) was used to establish PMOP model in rats. The experiment was allocated to Sham, OVX, SDG and raloxifene (RLX) groups. After 12-week treatment, micro-CT was used to detect the transverse section of bone. Hematoxylin and Eosin staining and Safranine O-Fast Green staining were supplied to detect the femur pathological morphology of rats. Estradiol (E2), interleukin-6 (IL-6), bone formation and bone catabolism indexes in serum were detected using ELISA. Alkaline phosphatase (ALP) staining was used to detect the osteogenic ability of chondrocytes. Immunohistochemistry and Western blot were applied to detect the protein expressions of estrogen receptors (ERs) in the femur of rats. RESULTS Compared with the OVX group, micro-CT results showed SDG could lessen the injury of bone and improve femoral parameters, including bone mineral content (BMC) and bone mineral density (BMD). Pathological results showed SDG could reduce pathological injury of femur in OVX rats. Meanwhile, SDG decreased the level of IL-6 and regulated bone formation and bone catabolism indexes. Besides, SDG increased the level of E2 and conversed OVX-induced decreased the expression of ERα and ERβ. CONCLUSION The treatment elicited by SDG in OVX rats was due to the reduction of injury and inflammation and improvement of bone formation index, via regulating the expression of E2 and ERs.
Collapse
Affiliation(s)
- Guofang Chen
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China.
| | - Yansong Chen
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| | - Junyi Hong
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| | - Junwei Gao
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| | - Zhikun Xu
- Department of Orthopaedics, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang Province, China
| |
Collapse
|
4
|
Al-Madhagy S, Ashmawy NS, Mamdouh A, Eldahshan OA, Farag MA. A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils. Eur J Med Res 2023; 28:240. [PMID: 37464425 DOI: 10.1186/s40001-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Flaxseed (Linum usitatissimum L) is an ancient perennial plant species regarded as a multipurpose plant owing to its richness in omega-3 polyunsaturated fatty acids (PUFA) including α-linolenic acid (ALA). The extensive biochemical analysis of flaxseed resulted in the identification of its bioactive, i.e., lignans with potential application in the improvement of human health. Flaxseed oil, fibers, and lignans exert potential health benefits including reduction of cardiovascular disease, atherosclerosis, diabetes, cancer, arthritis, osteoporosis, and autoimmune and neurological disorders that have led to the diversification of flaxseed plant applications. This comprehensive review focuses on flaxseed oil as the major product of flaxseed with emphasis on the interrelationship between its chemical composition and biological effects. Effects reviewed include antioxidant, anti-inflammatory, antimicrobial, anticancer, antiulcer, anti-osteoporotic, cardioprotective, metabolic, and neuroprotective. This study provides an overview of flaxseed oil effects with the reported action mechanisms related to its phytochemical composition and in comparison, to other PUFA-rich oils. This study presents the most updated and comprehensive review summarizing flaxseed oil's health benefits for the treatment of various diseases.
Collapse
Affiliation(s)
- Somaia Al-Madhagy
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Naglaa S Ashmawy
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ayat Mamdouh
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Yen C, Zhao F, Yu Z, Zhu X, Li CG. Interactions Between Natural Products and Tamoxifen in Breast Cancer: A Comprehensive Literature Review. Front Pharmacol 2022; 13:847113. [PMID: 35721162 PMCID: PMC9201062 DOI: 10.3389/fphar.2022.847113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Tamoxifen (TAM) is the most commonly used hormone therapeutic drug for the treatment of estrogen receptor-positive (ER+) breast cancer. 30%–70% of clinical breast cancer patients use natural products, which may increase the likelihood of drug interactions. Objective: To evaluate the evidence for the interactions between natural products and TAM in breast cancer. Methods: Electronic databases, including PubMed, CINAHL Plus (via EbscoHost), European PMC, Medline, and Google Scholar, were searched for relevant publications. The search terms include complementary and alternative medicine, natural products, plant products, herbs, interactions, tamoxifen, breast cancer, and their combinations. Results: Various in vitro and in vivo studies demonstrated that the combined use of natural products with TAM produced synergistic anti-cancer effects, including improved inhibition of tumor cell growth and TAM sensitivity and reduced side effects or toxicity of TAM. In contrast, some natural products, including Angelica sinensis (Oliv.) Diels [Apiaceae], Paeonia lactiflora Pall., Rehmannia glutinosa (Gaertn.) DC., Astragalus mongholicus Bunge, and Glycyrrhiza glabra L. [Fabaceae], showed estrogen-like activity, which may reduce the anti-cancer effect of TAM. Some natural products, including morin, silybin, epigallocatechin gallate (EGCG), myricetin, baicalein, curcumin, kaempferol, or quercetin, were found to increase the bioavailability of TAM and its metabolites in vivo. However, three are limited clinical studies on the combination of natural products and TAM. Conclusion: There is evidence for potential interactions of various natural products with TAM in pre-clinical studies, although the relevant clinical evidence is still lacking. Further studies are warranted to evaluate the potential interactions of natural products with TAM in clinical settings.
Collapse
Affiliation(s)
- Christine Yen
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - Fan Zhao
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,College of Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Yu
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,College of the First Clinical Medical, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoshu Zhu
- Chinese Medicine Centre, Western Sydney University, Sydney, NSW, Australia.,School of Health Sciences, Western Sydney University, Sydney, NSW, Australia.,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| |
Collapse
|
6
|
Campos JR, Severino P, Ferreira CS, Zielinska A, Santini A, Souto SB, Souto EB. Linseed Essential Oil - Source of Lipids as Active Ingredients for Pharmaceuticals and Nutraceuticals. Curr Med Chem 2019; 26:4537-4558. [PMID: 30378485 DOI: 10.2174/0929867325666181031105603] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 12/24/2022]
Abstract
Linseed - also known as flaxseed - is known for its beneficial effects on animal health attributed to its composition. Linseed comprises linoleic and α-linolenic fatty acids, various dietary fibers and lignans, which are beneficial to health because they reduce the risk of cardiovascular diseases, as well as cancer, decreasing the levels of cholesterol and relaxing the smooth muscle cells in arteries increasing the blood flow. Essential fatty acids from flax participate in several metabolic processes of the cell, not only as structuring components of the cell membrane but also as storage lipids. Flax, being considered a functional food, can be consumed in a variety of ways, including seeds, oil or flour, contributing to basic nutrition. Several formulations containing flax are available on the market in the form of e.g. capsules and microencapsulated powders having potential as nutraceuticals. This paper revises the different lipid classes found in flaxseeds and their genomics. It also discusses the beneficial effects of flax and flaxseed oil and their biological advantages as ingredients in pharmaceuticals and in nutraceuticals products.
Collapse
Affiliation(s)
- Joana R Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Patricia Severino
- Biotechnology Industrial Program, Laboratory of Nanotechnology and Nanomedicine (LNMed), University of Tiradentes, Av. Murilo Dantas, 300, 49010-390 Aracaju, Sergipe, Brazil.,Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Sergipe, Brazil
| | - Classius S Ferreira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of Sao Paulo, Diadema, Brazil
| | - Aleksandra Zielinska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Antonello Santini
- Department of Pharmacy, Universita degli Studi di Napoli Federico II, Italy
| | - Selma B Souto
- Department of Endocrinology, Braga Hospital, Sete Fontes, 4710-243 Sao Victor Braga, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
7
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
8
|
Phytotherapy and Nutritional Supplements on Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7207983. [PMID: 28845434 PMCID: PMC5563402 DOI: 10.1155/2017/7207983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/14/2017] [Accepted: 06/18/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent type of nonskin malignancy among women worldwide. In general, conventional cancer treatment options (i.e., surgery, radiotherapy, chemotherapy, biological therapy, and hormone therapy) are not completely effective. Recurrence and other pathologic situations are still an issue in breast cancer patients due to side effects, toxicity of drugs in normal cells, and aggressive behaviour of the tumours. From this point of view, breast cancer therapy and adjuvant methods represent a promising and challenging field for researchers. In the last few years, the use of some types of complementary medicines by women with a history of breast cancer has significantly increased such as phytotherapeutic products and nutritional supplements. Despite this, the use of such approaches in oncologic processes may be problematic and patient's health risks can arise such as interference with the efficacy of standard cancer treatment. The present review gives an overview of the most usual phytotherapeutic products and nutritional supplements with application in breast cancer patients as adjuvant approach. Regardless of the contradictory results of scientific evidence, we demonstrated the need to perform additional investigation, mainly well-designed clinical trials in order to establish correlations and allow for further validated outcomes concerning the efficacy, safety, and clinical evidence-based recommendation of these products.
Collapse
|
9
|
Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2014; 51:1633-53. [PMID: 25190822 PMCID: PMC4152533 DOI: 10.1007/s13197-013-1247-9] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/11/2013] [Accepted: 12/26/2013] [Indexed: 02/05/2023]
Abstract
Flaxseed is emerging as an important functional food ingredient because of its rich contents of α-linolenic acid (ALA, omega-3 fatty acid), lignans, and fiber. Flaxseed oil, fibers and flax lignans have potential health benefits such as in reduction of cardiovascular disease, atherosclerosis, diabetes, cancer, arthritis, osteoporosis, autoimmune and neurological disorders. Flax protein helps in the prevention and treatment of heart disease and in supporting the immune system. As a functional food ingredient, flax or flaxseed oil has been incorporated into baked foods, juices, milk and dairy products, muffins, dry pasta products, macaroni and meat products. The present review focuses on the evidences of the potential health benefits of flaxseed through human and animals' recent studies and commercial use in various food products.
Collapse
Affiliation(s)
- Ankit Goyal
- />Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India 132001
| | - Vivek Sharma
- />Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India 132001
| | - Neelam Upadhyay
- />Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India 132001
| | - Sandeep Gill
- />BITS Pilani, Hyderabad Campus Shameerpet Mandal Rangareddy District, Hyderabad, Andhra Pradesh India 500078
| | - Manvesh Sihag
- />Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India 132001
| |
Collapse
|
10
|
Flower G, Fritz H, Balneaves LG, Verma S, Skidmore B, Fernandes R, Kennedy D, Cooley K, Wong R, Sagar S, Fergusson D, Seely D. Flax and Breast Cancer. Integr Cancer Ther 2013; 13:181-92. [DOI: 10.1177/1534735413502076] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background. Flax is a food and dietary supplement commonly used for menopausal symptoms. Flax is known for its lignan, α-linolenic acid, and fiber content, components that may possess phytogestrogenic, anti-inflammatory, and hormone modulating effects, respectively. We conducted a systematic review of flax for efficacy in improving menopausal symptoms in women living with breast cancer and for potential impact on risk of breast cancer incidence or recurrence. Methods. We searched MEDLINE, Embase, the Cochrane Library, and AMED from inception to January 2013 for human interventional or observational data pertaining to flax and breast cancer. Results. Of 1892 records, we included a total of 10 studies: 2 randomized controlled trials, 2 uncontrolled trials, 1 biomarker study, and 5 observational studies. Nonsignificant (NS) decreases in hot flash symptomatology were seen with flax ingestion (7.5 g/d). Flax (25 g/d) increased tumor apoptotic index ( P < .05) and decreased HER2 expression ( P < .05) and cell proliferation (Ki-67 index; NS) among newly diagnosed breast cancer patients when compared with placebo. Uncontrolled and biomarker studies suggest beneficial effects on hot flashes, cell proliferation, atypical cytomorphology, and mammographic density, as well as possible anti-angiogenic activity at doses of 25 g ground flax or 50 mg secoisolariciresinol diglycoside daily. Observational data suggests associations between flax and decreased risk of primary breast cancer (adjusted odds ratio [AOR] = 0.82; 95% confidence interval [CI] = 0.69-0.97), better mental health (AOR = 1.76; 95% CI = 1.05-2.94), and lower mortality (multivariate hazard ratio = 0.69; 95% CI = 0.50-0.95) among breast cancer patients. Conclusions. Current evidence suggests that flax may be associated with decreased risk of breast cancer. Flax demonstrates antiproliferative effects in breast tissue of women at risk of breast cancer and may protect against primary breast cancer. Mortality risk may also be reduced among those living with breast cancer.
Collapse
Affiliation(s)
- Gillian Flower
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Ottawa Integrative Cancer Center, Ottawa, Ontario, Canada
| | - Heidi Fritz
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Lynda G. Balneaves
- University of British Columbia School of Nursing, Vancouver, British Columbia, Canada
- CAMEO Program, Vancouver, British Columbia, Canada
| | - Shailendra Verma
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Ottawa Regional Cancer Centre, Ottawa Hospital, Ontario, Canada
| | - Becky Skidmore
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | - Rochelle Fernandes
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- The University of Toronto, Toronto, Ontario, Canada
| | - Deborah Kennedy
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- The University of Toronto, Toronto, Ontario, Canada
| | - Kieran Cooley
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- The University of Toronto, Toronto, Ontario, Canada
| | | | | | - Dean Fergusson
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dugald Seely
- Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
- Ottawa Integrative Cancer Center, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|