1
|
de Sabóia-Morais SMT, de Lima Faria JM, da Silva Rabelo JC, Hanusch AL, Mesquita LA, de Andrade Silva R, de Oliveira JM, de Jesus LWO. Cylindrospermopsin exposure promotes redox unbalance and tissue damage in the liver of Poecilia reticulata, a neotropical fish species. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:120-132. [PMID: 37969104 DOI: 10.1080/15287394.2023.2282530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
There is a growing concern regarding the adverse risks exposure to cylindrospermopsin (CYN) might exert on animals and humans. However, data regarding the toxicity of this cyanotoxin to neotropical fish species are scarce. Using the fish species Poecilia reticulata, the influence of CYN concentrations equal to and above the tolerable for drinking water may produce on liver was determined by assessing biomarkers of antioxidant defense mechanisms and correlated to qualitative and semiquantitative histopathological observations. Adult females were exposed to 0.0 (Control); 0.5, 1 and 1.5 μg/L pure CYN for 24 or 96 hr, in triplicate. Subsequently the livers were extracted for biochemical assays and histopathological evaluation. Catalase (CAT) activity was significantly increased only by 1.5 μg/L CYN-treatment, at both exposure times. Glutathione -S-transferase (GST) activity presented a biphasic response for both exposure times. It was markedly decreased after exposure by 0.5 μg/L CYN treatment but significantly elevated by 1.5 μg/L CYN treatment. All CYN treatments produced histopathological alterations, as evidenced by hepatocyte cords degeneration, steatosis, inflammatory infiltration, melanomacrophage centers, vessel congestion, and areas with necrosis. Further, an IORG >35 was achieved for all treatments, indicative of the presence of severe histological alterations in P. reticulata hepatic parenchyma and stroma. Taken together, data demonstrated evidence that CYN-induced hepatotoxicity in P. reticulata appears to be associated with an imbalance of antioxidant defense mechanisms accompanied by histopathological liver alterations. It is worthy to note that exposure to low environmentally-relevant CYN concentrations might constitute a significant risk to health of aquatic organisms.
Collapse
Affiliation(s)
| | - João Marcos de Lima Faria
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Jéssica Custódio da Silva Rabelo
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | | | - Lorena Alves Mesquita
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Raquel de Andrade Silva
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Jerusa Maria de Oliveira
- Rede Nordeste de Biotecnologia (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
2
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
3
|
Harmful Algal Blooms in Aquaculture Systems in Ngerengere Catchment, Morogoro, Tanzania: Stakeholder's Experiences and Perception. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094928. [PMID: 34066310 PMCID: PMC8125329 DOI: 10.3390/ijerph18094928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
The aquaculture sector has experienced fast growth as a result of livelihood diversification initiatives among small-scale farmers in Tanzania. Regrettably, the dynamics of harmful algal blooms (HABs) have been overlooked despite the noticeable forcing of climate variability, the interaction between social-economic activities, and domestic water supply reservoirs. This study aimed at surveying the occurrence, experiences, and perceptions of HABs in aquaculture systems from stakeholders in the Ngerengere catchment, Morogoro, Tanzania. A cross-sectional survey focus group discussion (FDG), key informant interviews, and anecdotal observation were adopted. A convenient and purposive sample population was drawn from pond owners, registered water users, and government officials in the catchment. For data analysis, descriptive statistics and constant comparison were performed. Most respondents (95%) were able to recognize the image of blooms displayed. Approximately 70% of the respondents agreed that water quality has deteriorated over time, and blooms occur during the dry season. Further, 60% of the respondents agreed that water pollution is a serious problem attributed to sources other than industrial discharge. There was no consensus regarding the health impacts associated with HABs. Raising awareness on HABs is of paramount importance as it will provide the basis for the development of HABs management framework and health risk assessment.
Collapse
|
4
|
Shi L, Du X, Liu H, Chen X, Ma Y, Wang R, Tian Z, Zhang S, Guo H, Zhang H. Update on the adverse effects of microcystins on the liver. ENVIRONMENTAL RESEARCH 2021; 195:110890. [PMID: 33617868 DOI: 10.1016/j.envres.2021.110890] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most common cyanobacteria toxins in eutrophic water, which have strong hepatotoxicity. In the past decade, epidemiological and toxicological studies on liver damage caused by MCs have proliferated, and new mechanisms of hepatotoxicity induced by MCs have also been discovered and confirmed. However, there has not been a comprehensive and systematic review of these new findings. Therefore, this paper summarizes the latest advances in studies on the hepatotoxicity of MCs to reveal the effects and mechanisms of hepatotoxicity induced by MCs. Current epidemiological studies have confirmed that symptoms or signs of liver damage appear after human exposure to MCs, and a long time of exposure can even lead to liver cancer. Toxicological studies have shown that MCs can affect the expression of oncogenes by activating cell proliferation pathways such as MAPK and Akt, thereby promoting the occurrence and development of cancer. The latest evidence shows that epigenetic modifications may play an important role in MCs-induced liver cancer. MCs can cause damage to the liver by inducing hepatocyte death, mainly manifested as apoptosis and necrosis. The imbalance of liver metabolic homeostasis may be involved in hepatotoxicity induced by MCs. In addition, the combined toxicity of MCs and other toxins are also discussed in this article. This detailed information will be a valuable reference for further exploring of MCs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Chen G, Wang L, Li W, Zhang Q, Hu T. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110444. [PMID: 32169726 DOI: 10.1016/j.ecoenv.2020.110444] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Nodularin (NOD) is a kind of cyanobacterial toxins. It is of concern due to elicit severe genotoxicity in humans and animals. The comprehensive evaluation of NOD-induced adverse effects in living organisms is urgently needed. This study is aimed to report the developmental toxicity and molecular mechanism using zebrafish embryos exposed to NOD. The embryonic toxicity induced by NOD is demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, embryonic malformation as well as defects in angiogenesis and common cardinal vein remodeling. NOD triggered a decreased rate of angiogenesis through inhibiting endothelial cells migration. NOD induced embryonic cell apoptosis and DNA damage, which can be alleviated by antioxidant N-acetyl-L-cysteine. NOD significantly caused oxidative damage as indicated by changes in reactive oxygen species, superoxide dismutase, catalase, glutathione and malondialdehyde. NOD also altered the expression of vascular development-genes (DLL4, CDH5, VEGFA, VEGFC) and apoptosis-related genes (BAX, BCL-2, P53, CASPASE 3). Taken together, NOD induced adverse effect on zebrafish embryos development, which may be associated with oxidative stress and apoptosis through the activation of P53-BAX/BCL-2-CASPASE 3-mediated pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenping Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
6
|
Menezes C, Valério E, Botelho MJ, Dias E. Isolation and Characterization of Cylindrospermopsis raciborskii Strains from Finished Drinking Water. Toxins (Basel) 2020; 12:toxins12010040. [PMID: 31936211 PMCID: PMC7020411 DOI: 10.3390/toxins12010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In the summer of 2015, an intense cyanobacterial bloom producing geosmin/2-methylisoborneol (MIB) occurred in the Roxo freshwater reservoir in Alentejo, Portugal. The drinking water supplied from the Roxo water treatment plant (WTP) exhibited an unpleasant odor/taste and a significant cyanobacteria density was detected in the finished water at the exit of the WTP. Cyanobacteria were not evaluated downstream of the WTP, namely, at the city reservoir. The aim of this work was to isolate and characterize viable cyanobacteria present in finished water (exit of the WTP and city reservoir) that withstand conventional water treatment. Treated water samples collected at both sites were inoculated in Z8 culture medium to provide the conditions for putative cyanobacterial growth. After 30 days, filamentous cyanobacteria were observed in cultures inoculated with samples from the exit point of the WTP. Viable trichomes were isolated and identified as Cylindrospermopsis raciborskii by morphometric and molecular analysis. None of the isolates were cylindrospermopsin/microcystin producers, as confirmed by ELISA and amplification of corresponding genes (PS/PKS and mcyA-cd/mcyAB/mcyB). ELISA results were positive for saxitoxin, but saxitoxin and derivatives were not detected by liquid chromatography with fluorescence detection (LC-FLD), nor were their related genes (sxtA/sxtA4/sxtB/sxtM/sxtPer/sxtI). To our knowledge, this is the first report on the establishment of cultures of C. raciborskii that resisted water treatment processes.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
| | - Elisabete Valério
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
| | - Maria João Botelho
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal;
| | - Elsa Dias
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; (C.M.); (E.V.)
- Centre for the Studies of Animal Science (CECA), Institute of Agrarian and Agri-Food Sciences and Technologies (ICETA), Oporto University, 4051-401 Oporto, Portugal
- Correspondence: ; Tel.: +35-1217519260
| |
Collapse
|
7
|
Sarkar S, Alhasson F, Kimono D, Albadrani M, Seth RK, Xiao S, Porter DE, Scott GI, Brooks B, Nagarkatti M, Nagarkatti P, Chatterjee S. Microcystin exposure worsens nonalcoholic fatty liver disease associated ectopic glomerular toxicity via NOX-2-MIR21 axis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103281. [PMID: 31706246 PMCID: PMC7100051 DOI: 10.1016/j.etap.2019.103281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/03/2023]
Abstract
NAFLD often results in cardiovascular, intestinal and renal complications. Previous reports from our laboratory highlighted NAFLD induced ectopic inflammatory manifestations in the kidney that gave rise to glomerular inflammation. Extending our studies, we hypothesized that existing inflammatory conditions in NAFLD could make the kidneys more susceptible to environmental toxicity. Our results showed that exposure of Microcystin-LR (MC) in NAFLD mice caused a marked increase in cellular scarring with a concomitant increase in mesangial cell activation as observed by increased α-SMA in the extracellular matrix surrounding the glomeruli. Renal tissue surrounding the glomeruli also showed increased NOX2 activation as shown by greater co-localization of p47 Phox and its membrane component gp91Phox both in the mesangial cell and surrounding tissue. Mechanistically, mesangial cells incubated with apocynin, nitrone spin trap DMPO and miR21 inhibitor showed significantly decreased α-SMA, miR21 levels and proinflammatory cytokine release in the supernatant. In parallel, mice lacking miR21, known to be activated by NOX2, when exposed to MC in NAFLD showed decreased mesangial cell activation. Strikingly, phenyl boronic acid incubated cells that were exposed to MC showed significantly decreased mesangial cell activation showing that peroxynitrite might be the major reactive species involved in mediation of the activation process, release of proinflammatory micro RNAs and cytokines that are crucial for renal toxicity. Thus, in conclusion, MC exposure causes NOX2 activation that leads to mesangial cell activation and toxicity via release of peroxynitrite that also represses PTEN by the upregulation of miR21 thus amplifying the toxicity.
Collapse
Affiliation(s)
- Sutapa Sarkar
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Firas Alhasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Diana Kimono
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Muayad Albadrani
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Shuo Xiao
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States
| | - Bryan Brooks
- Department of Environmental Science, Baylor University, United States
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, United States
| | - Prakash Nagarkatti
- Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, United States; NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, United States.
| |
Collapse
|
8
|
Zhang C, Massey IY, Liu Y, Huang F, Gao R, Ding M, Xiang L, He C, Wei J, Li Y, Ge Y, Yang F. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:845-853. [PMID: 31462174 DOI: 10.1080/15287394.2019.1660466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Harmful Microcystis aeruginosa blooms occurred frequently in many eutrophic lakes and rivers with resultant serious global environmental consequences. Algicidal bacteria may play an important role in inhibiting the growth of Microcystis aeruginosa and are considered as an effective method for preventing the appearance of blooms. In order to counteract the harmful effects of Microcystis aeruginosa, a critical step is to identify, isolate and characterize indigenous algicidal bacteria. This study aimed to isolate a novel indigenous algicidal bacterium identified as Chryseobacterium species based upon its 16S rDNA sequence analysis, and determine whether this bacterium was effective in lysing Microcystis aeruginosa FACHB 905. The influence of environmental factors including temperature, pH, quantity of Chryseobacterium species as well as Microcystis aeruginosa concentration were examined with respect to algae-lysing properties of this bacterial strain. Data demonstrated that the highest algae-lysing activity of 80% against Microcystis aeruginosa FACHB 905 occurred within 72 hr. In addition, the algae-lysing activities of Chryseobacterium species cells were significantly higher than those of cell-free supernatant. In conclusion, data showed the algicidal bacterium Chryseobacterium species exhibited potent Microcystis aeruginosa-lysing activities and attacked Microcystis aeruginosa directly suggesting this algicidal bacterium may be potentially useful for reducing the number of harmful Microcystis aeruginosa blooms.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Yan Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Feiyu Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Ruihuan Gao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Ming Ding
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Lin Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Chuning He
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Jia Wei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University , Nanjing , JS , China
| | - Yuliang Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University , Nanjing , JS , China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University , Nanjing , JS , China
| |
Collapse
|
9
|
Svirčev Z, Lalić D, Bojadžija Savić G, Tokodi N, Drobac Backović D, Chen L, Meriluoto J, Codd GA. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 2019; 93:2429-2481. [DOI: 10.1007/s00204-019-02524-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
10
|
Massey IY, Zhang X, Yang F. Importance of bacterial biodegradation and detoxification processes of microcystins for environmental health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:357-369. [PMID: 30373489 DOI: 10.1080/10937404.2018.1532701] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microcystins (MC) the most frequently reported cyanobacterial harmful algal bloom toxins primarily found in some species of freshwater genera pose a serious threat to human and animal health. To reduce health risks associated with MC exposure it is important to remove these toxins found in drinking and recreational waterbodies. Since the physical and chemical water treatment methods are inefficient in completely degrading MC, alternative approaches to effectively detoxify MC have become the focus of global research. The aim of this review was to provide the current approach to cost-effective biological treatment methods which utilize bacteria to degrade MC without generation of harmful by-products. In addition, the catabolic pathways involved in MC-degradation involving proteins encoded mlr gene cluster, intermediate products and efficiencies of bacteria strain/bacteria community are presented and compared.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Xian Zhang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Fei Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
- b Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health Southeast University , Nanjing , China
- c Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety , Central South University , Changsha , China
| |
Collapse
|
11
|
da Silva RDC, Grötzner SR, Moura Costa DD, Garcia JRE, Muelbert J, de Magalhães VF, Filipak Neto F, de Oliveira Ribeiro CA. Comparative bioaccumulation and effects of purified and cellular extract of cylindrospermopsin to freshwater fish Hoplias malabaricus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:620-632. [PMID: 29764335 DOI: 10.1080/15287394.2018.1469101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Many tropical freshwater ecosystems are impacted by cyanobacteria blooms increasing the risk of cyanotoxins exposure to aquatic organisms while human populations may be exposed by eating fish, drinking water, or dermal swimming. However, few toxicological data are available on the influence of cyanobacteria blooms in particular, cylindrospermopsin (CYN) on Brazilian neotropical fish. A number of studies demonstrated the ability of CYN to bioaccumulate in freshwater organisms and consequently enter the human food chain. The aim of the current study was to examine the effects of CYN following single intraperitoneal injection (50 µg/kg) of purified CYN (CYNp) or aqueous extract of CYN-producing cyanobacteria extract (CYNex) after 7 or 14 days. Biomarkers such as histopathology (liver), oxidative stress (liver and brain), and acetylcholinesterase (AChE) activity (muscle and brain) were utilized in order to assess the influence of CYN on Hoplias malabaricus. In terms of AChE activity, administration of CYNex and CYNp both muscle and brains were used as target tissues. In brain an increase of glutathione S-transferase (GST) activity and lipid peroxidation (LPO) levels was noted suggesting an imbalance in redox cycling. The majority of biomarkers did not present significant alterations in liver, but an elevation in superoxide dismutase (SOD) and glucose 6 phosphate dehydrogenase (G6PDH) activities was found. Different profiles of GST activity were observed in both studied groups (CYNex and CYNp) while LPO (CYNex and CYNp) and protein carbonylation (PCO) (CYNp) levels increased after exposure to CYN. The incidence of necrosis, melanomacrophages centers, and free melanomacrophages were detected as evidence of cell death and immune responses. Nonprotein thiols (NPT) levels were not markedly affected in both exposed groups. Data demonstrated that in vivo exposure to CYN produced biochemical and morphological disturbances in liver and brain of H. malabaricus.
Collapse
Affiliation(s)
- Rodrigo de Cássio da Silva
- a Departamento de Biologia Estrutural, Molecular e Genética , Universidade Estadual de Ponta Grossa , Ponta Grossa , Brasil
| | - Sonia Regina Grötzner
- b Departamento de Biologia Celular , Universidade Federal do Paraná, Cx , Curitiba , Brasil
| | | | | | - Juan Muelbert
- c Estação de Piscicultura Panamá , Paulo Lopes , Brazil
| | - Valéria Freitas de Magalhães
- d Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil
| | - Francisco Filipak Neto
- b Departamento de Biologia Celular , Universidade Federal do Paraná, Cx , Curitiba , Brasil
| | | |
Collapse
|
12
|
Chernoff N, Hill DJ, Chorus I, Diggs DL, Huang H, King D, Lang JR, Le TT, Schmid JE, Travlos GS, Whitley EM, Wilson RE, Wood CR. Cylindrospermopsin toxicity in mice following a 90-d oral exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:549-566. [PMID: 29693504 PMCID: PMC6764423 DOI: 10.1080/15287394.2018.1460787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 05/19/2023]
Abstract
Cylindrospermopsin (CYN) is a toxin associated with numerous species of freshwater cyanobacteria throughout the world. It is postulated to have caused an episode of serious illnesses in Australia through treated drinking water, as well as lethal effects in livestock exposed to water from farm ponds. Toxicity included effects indicative of both hepatic and renal dysfunction. In humans, symptoms progressed from initial hepatomegaly, vomiting, and malaise to acidosis and hypokalemia, bloody diarrhea, and hyperemia in mucous membranes. Laboratory animal studies predominantly involved the intraperitoneal (i.p.) route of administration and confirmed this pattern of toxicity with changes in liver enzyme activities and histopathology consistent with hepatic injury and adverse renal effects. The aim of this study was designed to assess subchronic oral exposure (90 d) of purified CYN from 75 to 300 µg/kg/d in mouse. At the end of the dosing period, examinations of animals noted (1) elevated organ to body weight ratios of liver and kidney at all dose levels, (2) treatment-related increases in serum alanine aminotransferase (ALT) activity, (3) decreased blood urea nitrogen (BUN) and cholesterol concentrations in males, and (4) elevated monocyte counts in both genders. Histopathological alterations included hepatocellular hypertrophy and cord disruption in the liver, as well as renal cellular hypertrophy, tubule dilation, and cortical tubule lesions that were more prominent in males. A series of genes were differentially expressed including Bax (apoptosis), Rpl6 (tissue regeneration), Fabp4 (fatty acid metabolism), and Proc (blood coagulation). Males were more sensitive to many renal end points suggestive of toxicity. At the end of exposure, toxicity was noted at all dose levels, and the 75 µg/kg group exhibited significant effects in liver and kidney/body weight ratios, reduced BUN, increased serum monocytes, and multiple signs of histopathology indicating that a no-observed-adverse-effect level could not be determined for any dose level.
Collapse
Affiliation(s)
- N Chernoff
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - D J Hill
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - I Chorus
- b Division of Drinking-Water and Swimming-Pool Hygiene , Umweltbundesamt , Berlin , Germany
| | - D L Diggs
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - H Huang
- d North Carolina State University , Raleigh , NC , USA
| | - D King
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - J R Lang
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - T-T Le
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - J E Schmid
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - G S Travlos
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - E M Whitley
- f Pathogenesis , LLC , Gainesville , FL , USA
| | - R E Wilson
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - C R Wood
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| |
Collapse
|
13
|
Menezes C, Churro C, Dias E. Risk Levels of Toxic Cyanobacteria in Portuguese Recreational Freshwaters. Toxins (Basel) 2017; 9:toxins9100327. [PMID: 29057822 PMCID: PMC5666374 DOI: 10.3390/toxins9100327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/16/2022] Open
Abstract
Portuguese freshwater reservoirs are important socio-economic resources, namely for recreational use. National legislation concerning bathing waters does not include mandatory levels or guidelines for cyanobacteria and cyanotoxins. This is an issue of concern since cyanotoxin-based evidence is insufficient to change the law, and the collection of scientific evidence has been hampered by the lack of regulatory levels for cyanotoxins in bathing waters. In this work, we evaluate the profile of cyanobacteria and microcystins (MC) in eight freshwater reservoirs from the center of Portugal, used for bathing/recreation, in order to determine the risk levels concerning toxic cyanobacteria occurrence. Three of the reservoirs did not pose a risk of MC contamination. However, two reservoirs presented a high risk in 7% of the samples according to the World Health Organization (WHO) guidelines for MC in bathing waters (above 20 µg/L). In the remaining three reservoirs, the risk concerning microcystins occurrence was low. However, they exhibited recurrent blooms and persistent contamination with MC up to 4 µg/L. Thus, the risk of exposure to MC and potential acute and/or chronic health outcomes should not be disregarded in these reservoirs. These results contribute to characterize the cyanobacterial blooms profile and to map the risk of toxic cyanobacteria and microcystins occurrence in Portuguese inland waters.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Catarina Churro
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Elsa Dias
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| |
Collapse
|
14
|
Drobac D, Tokodi N, Kiprovski B, Malenčić D, Važić T, Nybom S, Meriluoto J, Svirčev Z. Microcystin accumulation and potential effects on antioxidant capacity of leaves and fruits of Capsicum annuum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:145-154. [PMID: 28140774 DOI: 10.1080/15287394.2016.1259527] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/02/2016] [Indexed: 05/28/2023]
Abstract
Surface water, often used for irrigation purposes, may sometimes be contaminated with blooming cyanobacteria and thereby may contain their potent and harmful toxins. Cyanotoxins adversely affect many terrestrial plants, and accumulate in plant tissues that are subsequently ingested by humans. Studies were undertaken to (1) examine the bioaccumulation of microcystins (MCs) in leaves and fruits of pepper Capsicum annuum and (2) examine the potential effects of MCs on antioxidant capacity of these organs. Plants were irrigated with water containing MCs for a period of 3 mo. Data showed that MCs did not accumulate in leaves; however, in fruits the presence of the MC-LR (0.118 ng/mg dry weight) and dmMC-LR (0.077 ng/mg dry weight) was detected. The concentrations of MC-LR in fruit approached the acceptable guideline values and tolerable daily intake for this toxin. Lipid peroxidation levels and flavonoids content were significantly enhanced in both organs of treated plants, while total phenolic concentrations were not markedly variable between control and treated plants. Significant decrease in 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity was noted for both organs. The levels of superoxide anion in fruits and hydroxyl radical in leaves were markedly reduced. Data suggest that exposure to MCs significantly reduced antioxidant capacity of experimental plants, indicating that MCs affected antioxidant systems in C. annuum.
Collapse
Affiliation(s)
- Damjana Drobac
- a Department of Biology and Ecology, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
| | - Nada Tokodi
- a Department of Biology and Ecology, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
| | | | - Djordje Malenčić
- c Faculty of Agriculture , University of Novi Sad , Novi Sad , Serbia
| | - Tamara Važić
- a Department of Biology and Ecology, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
| | - Sonja Nybom
- d Faculty of Science and Engineering , Biochemistry, Åbo Akademi University , Turku , Finland
| | - Jussi Meriluoto
- a Department of Biology and Ecology, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
- d Faculty of Science and Engineering , Biochemistry, Åbo Akademi University , Turku , Finland
| | - Zorica Svirčev
- a Department of Biology and Ecology, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
- d Faculty of Science and Engineering , Biochemistry, Åbo Akademi University , Turku , Finland
| |
Collapse
|
15
|
Svirčev Z, Drobac D, Tokodi N, Mijović B, Codd GA, Meriluoto J. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch Toxicol 2017; 91:621-650. [DOI: 10.1007/s00204-016-1921-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|