1
|
Kuang H, Dai Y, Ding X, Li Y, Cha C, Jiang W, Zhang H, Zhou W, Zeng Y, Pang Q, Fan R. Association among blood BPDE-DNA adduct, serum interleukin-8 (IL-8) and DNA strand breaks for children with pulmonary diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:823-834. [PMID: 31722538 DOI: 10.1080/09603123.2019.1690638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to benzo[a]pyrene (B[a]P) may be a risk factor for pulmonary diseases. To investigate the correlations among B[a]P exposure level, DNA strand breaks and pulmonary inflammation, we recruited 83 children diagnosed with pulmonary diseases and 63 healthy children from Guangzhou, China. Results showed that the levels of Benzo[a]pyrene diol epoxide (BPDE) DNA adduct in blood and IL-8 in serum in case group were significantly higher than those in control group (p < 0.01). Moreover, levels of atmospheric B[a]P in case group was about twice of those in control group, which was consistent with the levels of BPDE-DNA adduct in blood. Significant positive correlations were observed among the levels of BPDE-DNA adduct, IL-8 and DNA strand breaks (p < 0.05). Our findings indicate that environmental air is an important exposure source of B[a]P and higher B[a]P exposure may contribute to the occurrence of pulmonary inflammation and lead to high health risks.
Collapse
Affiliation(s)
- Hongxuan Kuang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanyan Dai
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Caihui Cha
- Department of Psychology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wenhui Jiang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenji Zhou
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yingwei Zeng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruifang Fan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Wang Y, Jia Y, Yan L, Fu J, Hao M, Chen W, Yao B, Zhao P, Zhou Z. Clusterin and neuropilin-2 as potential biomarkers of tumor progression in benzo[a]pyrene-transformed 16HBE cells xenografted nude mouse model. Chem Biol Interact 2017; 275:145-151. [PMID: 28784314 DOI: 10.1016/j.cbi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environment contaminant and its exposure could increase incidence of human lung cancer. In order to confirm and compare potential biomarkers of BaP-induce carcinogenesis and tumor progression, time-dependent changes of clusterin (CLU) and neuropilin-2 (NRP2) levels were evaluated in sera of BaP-transformed 16HBE cell line T-16HBE-C1 cells xenografted nude mice. Performance of CLU and NRP2 on tissue classification and tumor progression forecast was also calculated. Levels of CLU and NRP2 were significant elevated in both culture supernatant of T-16HBE-C1 cells and sera of T-16HBE-C1 cells xenografted nude mice compared with control. CLU and NRP2 were both found positively stained in tumor tissue. CLU and NRP2 alone could well predicate tumor progression in nude mice and CLU appeared to be more sensitive than NRP2. When both of them combined, performance of predication would improve. In conclusion, CLU and NRP2 could serve as potential biomarkers of tumor progression in nude mice xenografted with T-16HBE-C1 cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Yongrui Jia
- Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, PR China
| | - Lailai Yan
- Central Laboratory, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Juanling Fu
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Mingmei Hao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Wen Chen
- Department of Toxicology, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Biyun Yao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China
| | - Peng Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| | - Zongcan Zhou
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
3
|
Lin CS, Chiou WY, Lee KW, Chen TF, Lin YJ, Huang JL. Xeroderma pigmentosum, complementation group D expression in H1299 lung cancer cells following benzo[a]pyrene exposure as well as in head and neck cancer patients. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:39-47. [PMID: 26731659 DOI: 10.1080/15287394.2015.1104271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA repair genes play critical roles in response to carcinogen-induced and anticancer therapy-induced DNA damage. Benzo[a]pyrene (BaP), the most carcinogenic polycyclic aromatic hydrocarbon (PAH), is classified as a group 1 carcinogen by International Agency for Research on Cancer. The aims of this study were to (1) evaluate the effects of BaP on DNA repair activity and expression of DNA repair genes in vitro and (2) examine the role of xeroderma pigmentosum, complementation group D (XPD) mRNA expression in human head and neck cancers. Host cell reactivation assay showed that BaP inhibited nucleotide excision repair in H1299 lung cancer cells. DNA repair through the non-homologous end-joining pathway was not affected by BaP. Real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) and Western blot demonstrated that XPD was downregulated by BaP treatment. BaP exposure did not apparently affect expression of another 11 DNA repair genes. BaP treatment increased the DNA damage marker γ-H2AX and ultraviolet (UV) sensitivity, supporting an impairment of DNA repair in BaP-treated cells. XPD expression was also examined by quantitative RT-PCR in 68 head and neck cancers, and a lower XPD mRNA level was found in smokers' cancer specimens. Importantly, reduced XPD expression was correlated with patient 5-year overall survival rate (35 vs. 56%) and was an independent prognostic factor (hazard ratio: 2.27). Data demonstrated that XPD downregulation was correlated with BaP exposure and human head and neck cancer survival.
Collapse
Affiliation(s)
- Chang-Shen Lin
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
- b Department of Biological Sciences , National Sun Yat-sen University , Kaohsiung , Taiwan
| | - Wen-Yen Chiou
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ka-Wo Lee
- c Department of Otolaryngology, Faculty of Medicine , College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
- d Department of Otolaryngology , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Tzu-Fen Chen
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yuan-Jen Lin
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jau-Ling Huang
- e Department of Bioscience Technology , College of Health Science, Chang Jung Christian University , Tainan , Taiwan
| |
Collapse
|
4
|
Wallace MAG, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:380-409. [PMID: 27759495 PMCID: PMC6147038 DOI: 10.1080/10937404.2016.1215772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | | | - Joachim D Pleil
- a Exposure Methods and Measurement Division, National Exposure Research Laboratory, Office of Research and Development , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| |
Collapse
|
5
|
Zhao P, Fu J, Yao B, Jia Y, Zhang H, Li X, Dong L, Gao Y, Liu W, Chen W, Zhou Z. Label-free quantitative proteomic analysis of benzo(a)pyrene-transformed 16HBE cells serum-free culture supernatant and xenografted nude mice sera. Chem Biol Interact 2015; 245:39-49. [PMID: 26748308 DOI: 10.1016/j.cbi.2015.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/01/2015] [Accepted: 12/29/2015] [Indexed: 11/30/2022]
Abstract
To screen potential biomarkers of benzo(a)pyrene (BaP)-induced lung cancer, the proteomic profiles of BaP-transformed 16HBE cell line T-16HBE-C1 cells serum-free culture supernatant and xenografted nude mice sera were compared with those of 16HBE group by utilizing label-free quantitative proteomic strategy. By employing nano-LC-MS/MS technology followed by MaxQuant and Perseus processing, 489 differentially expressed proteins were identified between T-16HBE-C1 and 16HBE cells serum-free culture supernatant, and 49 significantly up-regulated proteins were identified in T-16HBE-C1 xenografted nude mice sera. Three proteins neuropilin-2 (NRP2), clusterin (CLU) and A-kinase anchor protein 12 (AKAP12) were up-regulated in the serum-free culture supernatant of T-16HBE-C1 cells. These 3 human proteins were present in the sera of nude mice xenografted with T-16HBE-C1 cells, but were undetectable in mice xenografted with 16HBE cells. The proteomic results of NRP2 and AKAP12 were confirmed by Western blotting and enzyme-linked immunosorbent assays, respectively. Moreover, the serum NRP2 levels were significantly elevated at the 4th day after tumor cell implantation and showed good positive correlation with tumor growth characterized by tumor volume. In conclusion, serum NRP2, CLU and AKAP12 could be potential biomarkers of BaP-induced lung cancer. The proteomic results will gain deeper insights into the mechanisms of BaP-induced carcinogenesis.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China.
| | - Juanling Fu
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China
| | - Biyun Yao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yongrui Jia
- Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, PR China
| | - Hongtao Zhang
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xuehui Li
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Lisha Dong
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ya Gao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Wenli Liu
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Wen Chen
- Department of Toxicology, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Zongcan Zhou
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
6
|
Kim DH, Kwack SJ, Yoon KS, Choi JS, Lee BM. 4-Hydroxynonenal: A Superior Oxidative Biomarker Compared to Malondialdehyde and Carbonyl Content Induced by Carbon Tetrachloride in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1051-1062. [PMID: 26252470 DOI: 10.1080/15287394.2015.1067505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carbon tetrachloride (CCl4), a halogenated substance that generates free radical species during metabolism in vivo, induces hepatotoxicity, produces oxidative DNA damage, and increased levels of protein carbonyl, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In this study, Sprague-Dawley rats received single or repeated ip injections of carbon tetrachloride (CCl4), and formation and persistence of carbonyls, MDA, and 4-HNE in plasma were measured using gas chromatography-mass spectrometry. After a single injection of 500 mg/kg CCl4 the in vivo half-lives of MDA and carbonyl content were 1.5 d and 2 d, respectively, while that of 4-HNE was approximately 10 d. Treatment with CCl4 (50, 100, 500, or 1000 mg/kg) dose-dependently increased these oxidative biomarkers in blood. However, formation of protein carbonyls and MDA was less sensitive than 4-HNE to CCl4. Levels of serum glutamic oxaloacetic transaminase (SGOT) and glutamic pyruvic transaminase (SGPT) (hepatotoxicity markers) rose with CCl4 doses. After a single injection (500 mg/kg), the peak level of SGOT was observed after 8 h but SGPT after 24 h. Overall, 4-HNE was more dose-sensitive and showed greater formation subchronically than other biomarkers. Multiple ip treatments with 300 mg CCl4 /kg (d 1, 3, 6, 10, 14, and 21) demonstrated that 4-HNE formation was highest (18-fold, peak/control) and subchronic up to d 21 (last treatment day), unlike other biomarkers. Data suggest that 4-HNE, MDA, and carbonyl content may be useful oxidative biomarkers for exposure to free radical generating halogenated compounds. However, 4-HNE appears to be a more sensitive and sustainable biomarker for toxicological and risk assessments.
Collapse
Affiliation(s)
- Dong Hyun Kim
- a Department of Pharmacology and Pharmacogenomics Research Center , College of Medicine, Inje University, 75 Bokgi-ro , Busanjin-gu, Busan 614-735 , South Korea
| | - Seung Jun Kwack
- b Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam 641-773 , South Korea
| | - Kyung Sik Yoon
- b Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam 641-773 , South Korea
| | - Jin Shil Choi
- b Department of Biochemistry and Health Science , College of Natural Sciences, Changwon National University , Changwon , Gyeongnam 641-773 , South Korea
| | - Byung-Mu Lee
- c Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-Do 440-746 , South Korea
| |
Collapse
|
7
|
Moreau M, Ayotte P, Bouchard M. Kinetics of Diol and Hydroxybenzo[a]pyrene Metabolites in Relation to DNA Adduct Formation and Gene Expression in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:725-746. [PMID: 26090558 DOI: 10.1080/15287394.2015.1028119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benzo[a]pyrene (BaP) is a human carcinogen, but there are no validated biomarkers of exposure and the relationship of carcinogenesis with early biological alterations is not fully documented. This study aimed at better documenting the toxicokinetics of diolBaP and hydroxyBaP metabolites as potential biomarkers of exposure to BaP in relation to DNA adduct formation and gene expression. Rats were intravenously (iv) injected with 40 μmol/kg BaP. BaP and several metabolites were measured in blood, tissues, and excreta collected at frequent intervals over 72 h posttreatment. BaP diol epoxide (BaPDE)-DNA adduct formation and gene expression were assessed in lungs. 3-HydroxyBaP (3-OHBaP) and 4,5-diolBaP were the most abundant measured metabolites, and differences in time courses were apparent between the two metabolites. Over the 0-72 h period, mean proportions of BaP dose recovered in urine as 3-OHBaP and 4,5-diolBaP (±SD) were 0.017 ± 0.003% and 0.1 ± 0.03%. Corresponding values in feces were 1.5 ± 0.5% and 0.42 ± 0.052%. BaPDE-DNA adducts were significantly increased in lungs and a correlation was observed with urinary 3-OHBaP and 4,5-diolBaP. Analysis of gene expression showed a modulation of expression of metabolic genes (Cyp1a1, Cyp1b1, Nqo1, Ahr) and oxidative stress and repair genes (Nrf2, Rad51). However, BaPDE adducts formation did not exhibit any significant correlation with expression of genes, except a negative correlation with Rad51 expression. Similarly, there was no significant correlation between urinary excretion of OHBaP and diolBaP and expression of genes, except for urinary 7-OHBaP excretion, which was negatively correlated with Rad51 expression. Results indicate that concomitant measurements of diolBaP and OHBaP may serve to better assess the extent of exposure as compared to single metabolite measurements, given kinetic differences between metabolites. Further, although some urinary metabolites were correlated with BaPDE adducts, links with gene expression need to be further investigated.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and the Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | |
Collapse
|