1
|
Huang J, Fu Z, Yu W, Bai Z, Ma Z. Toxic Effects of Carbaryl Exposure on Juvenile Asian Seabass ( Lates calcarifer). J Xenobiot 2024; 14:923-938. [PMID: 39051347 PMCID: PMC11270272 DOI: 10.3390/jox14030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
This study examines the physiological and immunological effects of 0.5 ppm carbaryl exposure on juvenile Asian seabass (Lates calcarifer) over 12 h to 72 h. Notable results include decreased activities of liver enzymes catalase (CAT), lactate dehydrogenase (LDH), and glutathione peroxidase (GSH-PX), while superoxide dismutase (SOD) levels remained stable, with the lowest activities of CAT and GSH-PX observed at 72 h. Serum biochemistry revealed increased alkaline phosphatase (AKP) and acid phosphatase (ACP) at 24 h, with declining aspartate aminotransferase (AST) and a peak in creatinine at 48 h. Histopathological analysis showed carbaryl-induced necrosis in liver and spleen cells, and increased melanomacrophage centers in both organs. Additionally, immune gene expression analysis indicated an upregulation of heat shock proteins and consistent elevation of complement component C3 and interleukin-8 (IL-8). These findings suggest that carbaryl exposure significantly impairs organ function and modulates immune responses in L. calcarifer, underlining the need for further research on protective strategies against pesticide impacts in aquaculture.
Collapse
Affiliation(s)
- Junhua Huang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wei Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zemin Bai
- Yazhou Bay Agriculture and Aquaculture Co., Ltd., Sanya 572025, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| |
Collapse
|
2
|
Chen X, Tu Q, Zhao W, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural mediated developmental toxicity in Drosophila melanogaster. Food Chem Toxicol 2024; 189:114738. [PMID: 38754806 DOI: 10.1016/j.fct.2024.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
5-hydroxymethylfurfural is a common byproduct in food. However, its effect on growth and development remains incompletely understood. This study investigated the developmental toxicity of 5-HMF to Drosophila larvae. The growth and development of Drosophila melanogaster fed with 5-50 mM 5-HMF was monitored, and its possible mechanism was explored. It was found that 5-HMF prolonged the developmental cycle of Drosophila melanogaster (25 mM and 50 mM). After 5-HMF intake, the level of reactive oxygen species in the third instar larvae increased by 1.23-1.40 fold, which increased the level of malondialdehyde and caused changes in antioxidant enzymes. Moreover, the nuclear factor erythroid-2 related factor 2 antioxidant signaling pathway and the expression of heat shock protein genes were affected. At the same time, 5-HMF disrupted the glucose and lipid metabolism in the third instar larvae, influencing the expression level of key genes in the insulin signal pathway. Furthermore, 5-HMF led to intestinal oxidative stress, and up-regulated the expression of the pro-apoptotic gene, consequently impacting intestinal health. In short, 5-HMF causes oxidative stress, disturbs glucose and lipid metabolism and induces intestinal damage, damaging related signaling pathways, and ultimately affecting the development of Drosophila melanogaster.
Collapse
Affiliation(s)
- Xunlin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qinghui Tu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzheng Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaorong Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhongzheng Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Chen T, Chen H, Wang A, Yao W, Xu Z, Wang B, Wang J, Wu Y. Methyl Parathion Exposure Induces Development Toxicity and Cardiotoxicity in Zebrafish Embryos. TOXICS 2023; 11:84. [PMID: 36668810 PMCID: PMC9866970 DOI: 10.3390/toxics11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Tianyi Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Haoze Chen
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Zhongshi Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
4
|
Xu G, Li J, Zhang D, Su T, Li X, Cui S. HSP70 inhibits pig pituitary gonadotrophin synthesis and secretion by regulating the corticotropin-releasing hormone signaling pathway and targeting SMAD3. Domest Anim Endocrinol 2021; 74:106533. [PMID: 32992141 DOI: 10.1016/j.domaniend.2020.106533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022]
Abstract
High levels or long periods of stress have been shown to negatively impact cell homeostasis, including with respect to abnormalities in domestic animal reproduction, which are typically activated through the hypothalamus-pituitary-adrenal axis, in which corticotropin-releasing hormone (CRH) and heat shock protein 70 (HSP70) are involved. In addition, CRH has been reported to inhibit pituitary gonadotrophin synthesis, and HSP70 is expressed in the pituitary gland. The aim of this study was to determine whether HSP70 was involved in regulating gonadotrophin synthesis and secretion by mediating the CRH pathway in the porcine pituitary gland. Our results showed that HSP70 was highly expressed in the porcine pituitary gland, with over 90% of gonadotrophic cells testing HSP70 positive. The results of functional studies demonstrated that the HSP70 inducer decreased FSH and LH levels in cultured porcine primary pituitary cells, whereas an HSP70 inhibitor blocked the negative effect of CRH on gonadotrophin synthesis and secretion. Furthermore, our results demonstrated that HSP70 inhibited gonadotrophin synthesis and secretion by blocking GnRH-induced SMAD3 phosphorylation, which acts as the targeting molecule of HSP70, while CRH upregulated HSP70 expression through the PKC and ERK pathways. Collectively, these data demonstrate that HSP70 inhibits pituitary gonadotrophin synthesis and secretion by regulating the CRH signaling pathway and inhibiting SMAD3 phosphorylation, which are important for our understanding the mechanisms of the stress affects domestic animal reproductive functions.
Collapse
Affiliation(s)
- G Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - J Li
- Department of Reproductive Medicine and Genetics, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - D Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - T Su
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - X Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - S Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China.
| |
Collapse
|
5
|
Environmental level of the antidepressant venlafaxine induces behavioral disorders through cortisol in zebrafish larvae (Danio rerio). Neurotoxicol Teratol 2020; 83:106942. [PMID: 33220437 DOI: 10.1016/j.ntt.2020.106942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Psychoactive drugs discharged into the environment have different effects on the behavior of vertebrates. The objective of this study was to evaluate the effect of venlafaxine on the behavior of zebrafish, and whether melatonin could reverse the induction of venlafaxine. In this study, a series of venlafaxine concentrations (1 μg/L, 10 μg/L, 100 μg/L) was used to treat zebrafish embryos from 2 hours post-fertilization (hpf) to 5dpf. We found that venlafaxine (1 μg/L) can stimulate the growth of the head area, eye area, and body length of zebrafish. The light-dark test showed that venlafaxine (1 μg/L) could increase the activity of zebrafish larvae. What's more, venlafaxine (1 μg/L) upregulated the expression of steroid regulatory factors including steroidogenic acute regulatory protein (star), cytochrome P450 family member 11A1 (cyp11a1) and 11 β hydroxylase (cyp11b1) by cAMP-pCREB pathway, affecting the function of the steroidogenic cells, which might be involved in the increased cortisol levels in zebrafish larvae. Whereas, melatonin (230 μg/L) restored the altered locomotion behavior induced by venlafaxine and recovered the altered gene expression. Our results demonstrate that venlafaxine at levels detected in the aquatic environment impacts behavior and may compromise the adaptive responses to the environment in zebrafish larvae.
Collapse
|
6
|
Zhang J, Yang Y, Liu W, Schlenk D, Liu J. Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2019; 133:105133. [PMID: 31520960 DOI: 10.1016/j.envint.2019.105133] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 05/16/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) have received significant concern, since they ubiquitously exist in the environment and are able to induce adverse health effects on human and wildlife. Increasing evidence shows that the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), members of the steroid receptor subfamily, are potential targets for EDCs. GR and MR mediate the actions of glucocorticoids and mineralocorticoids, respectively, which are two main classes of corticosteroids involved in many physiological processes. The effects of EDCs on the homeostasis of these two classes of corticosteroids have also gained more attention recently. This review summarized the effects of environmental GR/MR ligands on receptor activity, and disruption of corticosteroid homeostasis. More than 130 chemicals classified into 7 main categories were reviewed, including metals, metalloids, pesticides, bisphenol analogues, flame retardants, other industrial chemicals and pharmaceuticals. The mechanisms by which EDCs interfere with GR/MR activity are primarily involved in ligand-receptor binding, nuclear translocation of the receptor complex, DNA-receptor binding, and changes in the expression of endogenous GR/MR genes. Besides directly interfering with receptors, enzyme-catalyzed synthesis and prereceptor regulation pathways of corticosteroids are also important targets for EDCs. The collected evidence suggests that corticosteroids and their receptors should be considered as potential targets for safety assessment of EDCs. The recognition of relevant xenobiotics and their underlying mechanisms of action is still a challenge in this emerging field of research.
Collapse
Affiliation(s)
- Jianyun Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Public Health, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Ye Yang
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Li X, Kong H, Ji X, Gao Y, Jin M. Zebrafish behavioral phenomics applied for phenotyping aquatic neurotoxicity induced by lead contaminants of environmentally relevant level. CHEMOSPHERE 2019; 224:445-454. [PMID: 30831495 DOI: 10.1016/j.chemosphere.2019.02.174] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Environmental lead (Pb) exposure is a worldwide threat due to the ubiquitous contamination. Although the adverse effects of Pb on human health have previously been extensively explored, the eco-toxicological effects on aquatic vertebrates still need further investigation. In addition, there is a paucity in the knowledge of behavioral and physiological effects of Pb within the range of environmental relevant concentration (under 100 μg/L) on aquatic organisms such as zebrafish. Herein, we demonstrated that adult male zebrafish (Danio rerio) exposed to Pb at environmental concentration level (1 μg/L, 10 μg/L and 100 μg/L) for 14 days, exhibited obvious neuro-behavioral alteration including disturbed light dark preference, impaired exploratory behaviors and inhibited spatial working memory. The alteration of entire behavioral profiles was further associated with the disturbed expression patterns of mRNA level of key genes involved in neurodevelopment (gap43, syn2a, th, dat, and drd1b), neurotoxic effects (c-fos and gfap), and stress responses (tap, mt1, hsp70, and hsp90). To determine the comprehensively effect of aquatic contaminants on the entire behavioral profiles, behavioral phenomic data were obtained by hierarchical clustering analysis. Overall, we employed behavioral phenomics methods to find that Pb within standard chronic Pb toxic criteria, significantly altered behavioral phenotype and brain physiology, which would exert profound ecological consequences and offer the reference for adjustment of aquatic toxic criteria.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO. 44 West Culture Road, 250012, Ji'nan, Shandong Province, PR China
| | - Haotian Kong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Yan Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
8
|
Brüggemann M, Licht O, Fetter É, Teigeler M, Schäfers C, Eilebrecht E. Knotting nets: Molecular junctions of interconnecting endocrine axes identified by application of the adverse outcome pathway concept. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:318-328. [PMID: 28984380 DOI: 10.1002/etc.3995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 05/10/2023]
Abstract
To be defined as an endocrine disruptor, a substance has to meet several criteria, including the induction of specific adverse effects, a specific endocrine mode of action, and a plausible link between both. The latter criterion in particular might not always be unequivocally determined, especially because the endocrine system consists of diverse endocrine axes. The axes closely interact with each other, and manipulation of one triggers effects on the other. The present review aimed to identify some of the many interconnections between these axes. The focus was on fish, but data obtained in studies on amphibians and mammals were considered if they assisted in closing data gaps, because most of the endocrine mechanisms are evolutionarily conserved. The review includes data both from ecotoxicological studies and on physiological processes and gives information on hormone/hormone receptor interactions or gene transcription regulation. The key events and key event relationships identified provide explanations for unexpected effects on one axis, exerted by substances suspected to act specifically on another axis. Based on these data, several adverse outcome pathway (AOP) segments are identified, describing connections between the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes, the HPG and hypothalamic-pituitary-adrenal/interrenal (HPA/I) axes, and the HPT and HPA/I axes. Central key events identified across axes were altered aromatase activity as well as altered expression and function of the proteins 11β-hydroxysteroid dehydrogenase (11β-HSD) and steroidogenic acute regulatory (StAR) protein. Substance classes that act on more than one endocrine axis were, for example, goitrogens or aromatase inhibitors. Despite the wealth of information gathered, the present review only provides a few insights into the molecular nets of endocrine axes, demonstrating the complexity of their interconnections. Environ Toxicol Chem 2018;37:318-328. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Maria Brüggemann
- Fraunhofer IME, Department of Ecotoxicology, Schmallenberg, Germany
| | - Oliver Licht
- Fraunhofer ITEM, Department of Chemical Risk Assessment, Hannover, Germany
| | - Éva Fetter
- German Environment Agency (UBA), Dessau, Germany
| | | | | | - Elke Eilebrecht
- Fraunhofer IME, Department of Ecotoxicology, Schmallenberg, Germany
| |
Collapse
|
9
|
Fuentes-Delgado VH, Martínez-Saldaña MC, Rodríguez-Vázquez ML, Reyes-Romero MA, Reyes-Sánchez JL, Jaramillo-Juárez F. Renal damage induced by the pesticide methyl parathion in male Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:130-141. [PMID: 29319433 DOI: 10.1080/15287394.2017.1394948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Little information is apparently available regarding the nephrotoxic effects induced by pesticides. The aim of this study was to examine the influence of low doses of methyl parathion (MP) on the structure and function of the kidney of male Wistar rats. A corn oil (vehicle) was administered to control rats, whereas treated rats received MP at 0.56 mg/kg orally (1/25 of LD50), every third day, for 8 weeks. At the end of each week following MP exposure, creatinine and glucose levels were measured in plasma, while glucose, inorganic phosphate, total proteins, albumin, and activity of γ-glutamyltranspeptidase (GGT) were determined in urine. Kidney histological study was also performed. Compared with control rats, MP significantly increased plasma glucose and creatinine levels accompanied by decreased urinary flow rate and elevated urinary excretion rates of glucose, phosphate, and albumin. Further, the activity of GGT in urine was increased significantly. The proximal cells exhibited cytoplasmic vacuolization, positive periodic acid Schiff inclusions, and brush border edge loss after 2 or 4 weeks following MP treatment. Finally, renal cortex samples were obtained at 2, 4, 6, and 8 weeks of MP treatment, and the concentrations of reduced glutathione (GSH) and glutathione peroxidase (GPx) activity were measured. The mRNA expression levels of BAX and tumor necrosis factor-α (TNF-α) were also determined (RT-PCR). MP significantly decreased renal GSH levels, increased GPx activity, as well as downregulated the mRNA expression of TNF-α and BAX. Densitometry analysis showed a significant reduction in TNF-α and BAX mRNA expression levels at 2 and 4 weeks following MP treatment. Low doses of MP produced structural and functional damage to the proximal tubules of male rat kidney.
Collapse
Affiliation(s)
- Victor Hugo Fuentes-Delgado
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| | - María Consolación Martínez-Saldaña
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| | - María Luisa Rodríguez-Vázquez
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| | - Miguel Arturo Reyes-Romero
- b Facultad de Medicina. Departamento de Medicina Molecular , Universidad Juárez del Estado de Durango , Durango , México
| | | | - Fernando Jaramillo-Juárez
- a Centro de Ciencias Básicas, Departamento de Fisiología y Farmacología , Universidad Autónoma de Aguascalientes , Aguascalientes , México
| |
Collapse
|
10
|
Reolon GK, de Melo GM, da Rosa JGDS, Barcellos LJG, Bonan CD. Sex and the housing: Effects on behavior, cortisol levels and weight in zebrafish. Behav Brain Res 2018; 336:85-92. [DOI: 10.1016/j.bbr.2017.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/24/2017] [Accepted: 08/05/2017] [Indexed: 12/28/2022]
|
11
|
Cunha V, Santos MM, Moradas-Ferreira P, Castro LFC, Ferreira M. Simvastatin modulates gene expression of key receptors in zebrafish embryos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:465-476. [PMID: 28682217 DOI: 10.1080/15287394.2017.1335258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Nuclear receptors (NR) are involved in the regulation of several metabolic processes and it is well known that these constituents may be modulated by different chemicals classes, including pharmaceuticals that may activate or antagonize NR. In mammals, some pharmaceuticals modulate the transcription of pregnane X receptor, Pxr, peroxisome proliferator activated receptor, Ppars, and aryl hydrocarbon receptor, Ahr, affecting mRNA expression of genes belonging to various regulatory pathways, including lipid metabolism and detoxification mechanisms. The aim of this study was to determine the effects of simvastatin (SIM), an anticholesterolemic drug, on selected NR and AhR mRNA transcription levels during zebrafish early development. Embryos were collected at different development stages (0, 2, 6, 14, 24, 48, and 72 hr post fertilization (hpf)) and mRNA of all target NR was detected at all time points. Embryos (1 and 24 hpf) were exposed to different concentrations of SIM (5 or 50 μg/L) in two differing assays with varying exposure times (2 or 80 hr). The transcription levels of ahr2, raraa, rarab, rarga, pparαa, pparβ1, pparγ, pxr, rxraa, rxrab, rxrbb, rxrga, rxrgb, as well as levels of cholesterol (Chol) were measured after exposure. SIM exerted no marked effect on Chol levels, and depending upon exposure duration mRNA levels of NR and AhR either increased or decreased. After 2 hr SIM treatment in 24 hpf embryos, transcription of ppars, pxr, and ahr was up-regulated, while after 80 hr mRNA levels of pxr and ahr were decreased with no marked changes in ppars. Data demonstrate that SIM produced alterations in gene expression of NR which are involved in varying physiological functions and that may disturb regulation of different physiological processes which might impair fish survival and ecosystems regeneration.
Collapse
Affiliation(s)
- V Cunha
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
| | - M M Santos
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - P Moradas-Ferreira
- b ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto , Porto , Portugal
- d I3S-Institute for Research and Innovation in Health, University of Porto , Porto , Portugal
| | - L F C Castro
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- c FCUP-Department of Biology , Faculty of Sciences, University of Porto, Rua do Campo Alegre , Porto , Portugal
| | - M Ferreira
- a CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n , Matosinhos , Portugal
- e School of Marine Studies, Faculty of Science , Technology and Environment, The University of the South Pacific, Private mail box, Laucala Bay Road , Suva , Fiji Islands
| |
Collapse
|
12
|
Santos da Rosa JG, Alcântara Barcellos HHD, Fagundes M, Variani C, Rossini M, Kalichak F, Koakoski G, Acosta Oliveira T, Idalencio R, Frandoloso R, Piato AL, José Gil Barcellos L. Muscarinic receptors mediate the endocrine-disrupting effects of an organophosphorus insecticide in zebrafish. ENVIRONMENTAL TOXICOLOGY 2017; 32:1964-1972. [PMID: 28371364 DOI: 10.1002/tox.22424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
The glucocorticoid cortisol, the end product of hypothalamus-pituitary-interrenal axis in zebrafish (Danio rerio), is synthesized via steroidogenesis and promotes important physiological regulations in response to a stressor. The failure of this axis leads to inability to cope with environmental challenges preventing adaptive processes in order to restore homeostasis. Pesticides and agrichemicals are widely used, and may constitute an important class of environmental pollutants when reach aquatic ecosystems and nontarget species. These chemical compounds may disrupt hypothalamus-pituitary-interrenal axis by altering synthesis, structure or function of its constituents. We present evidence that organophosphorus exposure disrupts stress response by altering the expression of key genes of the neural steroidogenesis, causing downregulation of star, hsp70, and pomc genes. This appears to be mediated via muscarinic receptors, since the muscarinic antagonist scopolamine blocked these effects.
Collapse
Affiliation(s)
- João Gabriel Santos da Rosa
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Heloísa Helena de Alcântara Barcellos
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Michele Fagundes
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Cristiane Variani
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Mainara Rossini
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Fabiana Kalichak
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Thiago Acosta Oliveira
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Renan Idalencio
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael Frandoloso
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Angelo L Piato
- Programa de Pós-Graduação em Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, sala 305, Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| |
Collapse
|
13
|
Rosenfeld CS, Denslow ND, Orlando EF, Gutierrez-Villagomez JM, Trudeau VL. Neuroendocrine disruption of organizational and activational hormone programming in poikilothermic vertebrates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:276-304. [PMID: 28895797 PMCID: PMC6174081 DOI: 10.1080/10937404.2017.1370083] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In vertebrates, sexual differentiation of the reproductive system and brain is tightly orchestrated by organizational and activational effects of endogenous hormones. In mammals and birds, the organizational period is typified by a surge of sex hormones during differentiation of specific neural circuits; whereas activational effects are dependent upon later increases in these same hormones at sexual maturation. Depending on the reproductive organ or brain region, initial programming events may be modulated by androgens or require conversion of androgens to estrogens. The prevailing notion based upon findings in mammalian models is that male brain is sculpted to undergo masculinization and defeminization. In absence of these responses, the female brain develops. While timing of organizational and activational events vary across taxa, there are shared features. Further, exposure of different animal models to environmental chemicals such as xenoestrogens such as bisphenol A-BPA and ethinylestradiol-EE2, gestagens, and thyroid hormone disruptors, broadly classified as neuroendocrine disrupting chemicals (NED), during these critical periods may result in similar alterations in brain structure, function, and consequently, behaviors. Organizational effects of neuroendocrine systems in mammals and birds appear to be permanent, whereas teleost fish neuroendocrine systems exhibit plasticity. While there are fewer NED studies in amphibians and reptiles, data suggest that NED disrupt normal organizational-activational effects of endogenous hormones, although it remains to be determined if these disturbances are reversible. The aim of this review is to examine how various environmental chemicals may interrupt normal organizational and activational events in poikilothermic vertebrates. By altering such processes, these chemicals may affect reproductive health of an animal and result in compromised populations and ecosystem-level effects.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Edward F. Orlando
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|