1
|
Giordani M, Mirata S, Scarfi S, Passalacqua M, Fornasini L, Drava G, Meli MA, Roselli C, Mattioli M. The cytotoxic/genotoxic role of impurities in soluble minerals: The case of natural (fibrous epsomite) versus synthetic (Epsom salt) magnesium sulphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178666. [PMID: 39904208 DOI: 10.1016/j.scitotenv.2025.178666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Epsomite and Epsom salt are very common mineral phases, and many known uses are found in agriculture, and in food and pharmaceutical industries. Natural epsomite can be fibrous and inhalable, potentially reaching the digestive tract after dissolving in mucus and saliva. Epsom salt is a common food additive (E 518) to which humans can be exposed daily, although its health effects are still debated. This study aims to (i) determine if natural epsomite (MP) and Epsom salt (SE) may be toxic to humans and (ii) identify and quantify the impurities in natural epsomite and try to ascertain their role in the toxicity of this mineral. In vitro experiments were performed on human colon epithelial cancer cells (Caco-2), enterocyte-like Caco-2-derived monolayers, human monocytic cell line THP-1, and THP-1-derived M0 macrophages. Generally, MP showed significantly higher toxicity in terms of oxidative stress, DNA damage and inflammation than SE, whose effects can be considered negligible. The higher pathogenicity of MP undoubtedly comes from the toxic elements of impurities, which are absent in pure SE. This research clarifies the role of impurities in the toxicity of natural epsomite, which may be higher than previously supposed. Moreover, considering its extensive use in the food industry, it represents a new step in assessing the safety of ingesting magnesium sulphate.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy; Inter-University Centre for the Promotion of the 3Rs Principles in Teaching & Research, 56122 Pisa, Italy
| | - Sonia Scarfi
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy; Inter-University Centre for the Promotion of the 3Rs Principles in Teaching & Research, 56122 Pisa, Italy
| | - Mario Passalacqua
- Inter-University Centre for the Promotion of the 3Rs Principles in Teaching & Research, 56122 Pisa, Italy; Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Laura Fornasini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
| | - Maria Assunta Meli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Carla Roselli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
2
|
Giordani M, Taussi M, Meli MA, Roselli C, Zambelli G, Fagiolino I, Mattioli M. High-levels of toxic elements and radioactivity in an abandoned sulphur mine: Insights on the origin and associated environmental concerns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167498. [PMID: 37778546 DOI: 10.1016/j.scitotenv.2023.167498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Natural fibrous epsomite crystals containing high amounts of toxic and radioactive elements have recently been discovered in the abandoned sulphur mine of Perticara (Italy). In the present study, all the different matrices that characterize the Perticara mine (air, water, host-rock, minerals, and bitumen) were sampled and investigated employing a multi-analytical approach to define the distribution and origin of these hazardous elements. Water samples showed high Al, Fe, Pb, Mg, and Mn content but not radioactive elements. The bitumen sample showed a higher amount of 210Po and 210Pb (0.12 Bq/g and 0.11 Bq/g, respectively), compared to the host-rock and fibrous sericolite samples, but lower than fibrous epsomite crystals (210Po 5.59 Bq/g; 210Pb 5.93 Bq/g). A high 222Rn concentration was also detected in the tunnels and it is likely the source of both 210Po and 210Pb, which are in radioactive equilibrium, especially in epsomite. This latter mineral, being capable of capturing 210Po and 210Pb, can be used as a helpful mineral indicator for the presence of radioactive elements in similar environmental conditions. Moreover, our results also highlight a slight anomaly in the 40K and 226Ra content of the host-rock, probably derived from the evaporitic sediments of the rock succession. The current risk for humans linked to the mine environment is minor since the activity of the mine ended several decades ago. However, the results of this study must be taken into serious consideration for any future development of this area (e.g., industrial archaeology, farming, educational, scientific and touristic purposes), and represent the basis for the calculation of radiotoxicity and dose assessment, which is fundamental for the correct and safe management of the mining environment and neighbouring areas.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Marco Taussi
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Assunta Meli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Carla Roselli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
3
|
Patel JP, Brook MS, Kah M, Hamilton A. Global geological occurrence and character of the carcinogenic zeolite mineral, erionite: A review. Front Chem 2022; 10:1066565. [PMID: 36465873 PMCID: PMC9715606 DOI: 10.3389/fchem.2022.1066565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/06/2024] Open
Abstract
As with the six regulated asbestos minerals (chrysotile, amosite, crocidolite, anthophyllite, tremolite, and actinolite), the zeolite mineral, erionite, can exhibit a fibrous morphology. When fibrous erionite is aerosolized and inhaled, it has been linked to cases of lung cancers, such as malignant mesothelioma. Importantly, fibrous erionite appears to be more carcinogenic than the six regulated asbestos minerals. The first health issues regarding erionite exposure were reported in Cappadocia (Turkey), and more recently, occupational exposure issues have emerged in the United States. Erionite is now classified as a Group 1 carcinogen. Thus, identifying the geological occurrence of erionite is a prudent step in determining possible exposure pathways, but a global review of the geological occurrence of erionite is currently lacking. Here, we provide a review of the >100 global locations where erionite has been reported, including: 1) geological setting of host rocks; 2) paragenetic sequence of erionite formation, including associated zeolite minerals; 3) fiber morphological properties and erionite mineral series (i.e., Ca, K, Na); and 4) a brief overview of the techniques that have been used to identify and characterize erionite. Accordingly, erionite has been found to commonly occur within two major rock types: felsic and mafic. Within felsic rocks (in particular, tuffaceous layers within lacustrine paleoenvironments), erionite is disseminated through the layer as a cementing matrix. In contrast, within mafic (i.e., basaltic) rocks, erionite is typically found within vesicles. Nevertheless, aside from detailed studies in Italy and the United States, there is a paucity of specific information on erionite geological provenance or fiber morphology. The latter issue is a significant drawback given its impact on erionite toxicity. Future erionite studies should aim to provide more detailed information, including variables such as rock type and lithological properties, quantitative geochemistry, and fiber morphology.
Collapse
|
4
|
Potential Toxicity of Natural Fibrous Zeolites: In Vitro Study Using Jurkat and HT22 Cell Lines. MINERALS 2022. [DOI: 10.3390/min12080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An emerging problem for human health is the exposure to non-regulated mineral fibers with an asbestos-like crystal habit, particularly fibrous zeolites. This study aimed to determine if and how selected fibrous zeolites (erionite, mesolite, and thomsonite) induce toxicity effects on two different in vitro cellular models, the adherent murine hippocampal (HT22) and human immortalized T lymphocyte (Jurkat) cell lines. Before proceeding with the cellular tests, the three zeolite samples were investigated using scanning electron microscopy–energy-dispersive spectroscopy and X-ray powder diffraction techniques. The cells were treated with 0.1 µM and 1 µM of fibrous erionite, mesolite, and thomsonite for 12, 24, and 48 h. Results showed a cytotoxic effect of erionite in both cellular models and revealed different toxic behaviors of the mesolite and thomsonite fibers, suggesting other potential mechanisms of action. The outcome of this study would be a first step for further research on fine biochemical interactions of zeolite fibers with cells and future in vivo investigations.
Collapse
|
5
|
Abstract
This study explored morphological, mineralogical, and physicochemical features of suspected toxic mordenite fibers from Northern Italy. All the mordenite samples (FAS1, GC1, SP1) show similar structural and chemical character, are Na-rich (Na > Ca > K), and the Al content decrease reflects the unit cell volumes in the series: FAS1 > SP1 > GC1. The aerodynamic diameter (Dae) values of the mordenite fibers are 1.19 μm for the GC1 sample, 2.69 μm for FAS1, and 3.91 μm for SP1. All the studied mordenite samples are characterized by “respirable” fibers despite the size differences, which could reach the deeper parts of the lungs. For this reason, fibrous mordenite could represent a potential health hazard and then need to be handled with attention, but further toxicity studies are needed.
Collapse
|
6
|
Fibrous Ferrierite from Northern Italy: Mineralogical Characterization, Surface Properties, and Assessment of Potential Toxicity. MINERALS 2022. [DOI: 10.3390/min12050626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, fibrous minerals pose as significant health hazards to humans, and exposure to these fibers can lead to the development of severe pulmonary diseases. This work investigated the morphology, crystal structure, chemistry, and surface activity of fibrous ferrierite recently found in northern Italy through an integrated approach using scanning electron microscopy–energy dispersive spectroscopy, electron microprobe, inductively coupled plasma atomic emission spectrometry, X-ray powder diffraction, and electron paramagnetic resonance. Our results show that a notable amount of ferrierite fibers are breathable (average length ~22 µm, average diameter 0.9 µm, diameter-length ratio >> 1:3) and able to reach the alveolar space (average Dae value 2.5 μm). The prevailing extra-framework cations are in the Mg > (Ca ≈ K) relationship, R is from 0.81 to 0.83, and the Si/Al ratio is high (4.2–4.8). The <T-O> bond distances suggest the occurrence of some degree of Si,Al ordering, with Al showing a site-specific occupation preference T1 > T2 > T3 > T4. Ferrierite fibers show high amounts of adsorbed EPR probes, suggesting a high ability to adsorb and interact with related chemicals. According to these results, fibrous ferrierite can be considered a potential health hazard, and a precautionary approach should be applied when this material is handled. Future in vitro and in vivo tests are necessary to provide further experimental confirmation of the outcome of this work.
Collapse
|
7
|
Giordani M, Meli MA, Roselli C, Betti M, Peruzzi F, Taussi M, Valentini L, Fagiolino I, Mattioli M. Could soluble minerals be hazardous to human health? Evidence from fibrous epsomite. ENVIRONMENTAL RESEARCH 2022; 206:112579. [PMID: 34968437 DOI: 10.1016/j.envres.2021.112579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
From a toxicological point of view, particulates and fibres with high solubility in water and/or in biological environments have not been considered in detail and the knowledge to date in this area is very scarce. In this study, the water-soluble natural epsomite fibres from Perticara Mine (Italy) were investigated using SEM-EDS, XRPD, ICP-AES and alpha spectrometry measurements which were combined and integrated to characterise the fibres' morphology, crystal chemistry and mineralogy. The morphological and morphometric results showed that most of the fibres are of inhalable size (Dae 5.09 μm) and can be potentially adsorbed from all parts of the respiratory tract. Chemical analysis reveals significant amounts of toxic elements (As, Co, Fe, Mn, Ni, Sr, Ti, Zn) and surprisingly high contents of radioactive isotopes (210Po and 228Th) in epsomite crystals, making the inhalation of these fibres potentially hazardous to human health. Through this study, we want to focus on soluble minerals, such as epsomite, which can be present in both natural and anthropic environments and have never been considered from the point of view of their potential hazard.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Maria Assunta Meli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Carla Roselli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fabio Peruzzi
- Speleological Federation of the Emilia-Romagna Region, Bologna, Italy
| | - Marco Taussi
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Valentini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
8
|
Giordani M, Mattioli M, Cangiotti M, Fattori A, Ottaviani MF, Betti M, Ballirano P, Pacella A, Di Giuseppe D, Scognamiglio V, Hanuskova M, Gualtieri AF. Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. CHEMOSPHERE 2022; 291:133067. [PMID: 34838598 DOI: 10.1016/j.chemosphere.2021.133067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy.
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Alberto Fattori
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | | | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Valentina Scognamiglio
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Miriam Hanuskova
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, I-41125, Modena, Italy
| | - Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125, Modena, Italy
| |
Collapse
|
9
|
Mattioli M, Cenni M. Mineralogical dataset of natural zeolites from Lessini Mounts, Northern Italy: Analcime, natrolite, phillipsite and harmotome chemical composition. Data Brief 2020; 31:105791. [PMID: 32577445 PMCID: PMC7300132 DOI: 10.1016/j.dib.2020.105791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022] Open
Abstract
This dataset article contains mineralogical and chemical data of some natural zeolites such as analcime, natrolite, phillipsite and harmotome. These minerals were found as secondary phases within vesicles and veins in the basaltic rocks of the Lessini Mounts, Northern Italy. Methods for obtaining the datasets include optical microscopy, X-ray diffraction, scanning electron microscopy and electron probe microanalysis. Analcime forms well-developed, transparent to milky crystals with a typical icositetrahedron habit. The average composition of analcime is calculated as Na13.79Ca0.01K0.03Ba0.03[Al14.28Si33.82O96] 16H2O, with all of the extra-framework sites occupied by sodium. Natrolite usually forms hemispherical aggregates with glassy, colourless to white thin prismatic crystals, which generally radiate from a central point. The average chemical composition of natrolite is Na14.28Ca0.14K0.01[Al15.60Si24.59O80] 16H2O. Crystals of phillipsite-harmotome serie occur in a variety of forms and display a highly variable chemical composition, from almost pure compositions to intermediate values. Phillipsite is more common and its average chemical composition is Ca1.40Na0.29K1.08Ba0.27[Al4.68Si11.28O32] 12H2O, while harmotome is rare and has an average chemical composition of Ca0.97Na0.20K0.36Ba0.91[Al4.60Si11.46O32] 12H2O. The obtained dataset can be used for various purposes: it can be used by other authors to compare morphological features and chemical compositions of similar zeolites crystals discovered in other parts of the world, it can be compared with those obtained from similar geologic environments encouraging studies on hydrothermal processes, and it could represent the starting point for a potential exploration of zeolites from an industrial point of view.
Collapse
|
10
|
Real-Time Observation of Fibrous Zeolites Reactivity in Contact with Simulated Lung Fluids (SLFs) Obtained by Atomic Force Microscope (AFM). MINERALS 2019. [DOI: 10.3390/min9020083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhalation of fibrous erionite particles has been linked to malignant mesothelioma. Accordingly, erionite is considered the most carcinogenic mineral. The reactivity and the nature of erionite biotoxicity has been the subject of intensive research. Despite very close chemical and structural relationships between erionite and offretite, the reactivity of offretite in lung fluids remains unknown. In this paper, the interaction of erionite and offretite surfaces with simulated lung fluids was investigated by means of in situ atomic force microscope (AFM). To simulate different environments in the lungs, artificial lysosomal fluid (ALF) and Gamble’s solution were used. In ALF (4.15 < pH < 4.31) the dissolution of erionite and offretite surfaces was detected, as well as an evident removal of particles (mainly attributed to impurities) from the crystal faces. Instead, the growth of a layer of a yet unknown phase on the surface of both zeolites was observed during the interaction with Gamble’s solution (7.4 < pH < 8.48). The thickness of this layer reached a few tens of nanometers and covered all the observed areas. The understanding of the observed processes is of paramount importance, since they could be potentially involved in the mechanisms triggering the toxicological effects of erionite fibres.
Collapse
|
11
|
Prismatic to Asbestiform Offretite from Northern Italy: Occurrence, Morphology and Crystal-Chemistry of a New Potentially Hazardous Zeolite. MINERALS 2018. [DOI: 10.3390/min8020069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Different Erionite Species Bind Iron into the Structure: A Potential Explanation for Fibrous Erionite Toxicity. MINERALS 2018. [DOI: 10.3390/min8020036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Cangiotti M, Salucci S, Battistelli M, Falcieri E, Mattioli M, Giordani M, Ottaviani MF. EPR, TEM and cell viability study of asbestiform zeolite fibers in cell media. Colloids Surf B Biointerfaces 2018; 161:147-155. [DOI: 10.1016/j.colsurfb.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/13/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
|
14
|
Giordani M, Mattioli M, Ballirano P, Pacella A, Cenni M, Boscardin M, Valentini L. Geological occurrence, mineralogical characterization, and risk assessment of potentially carcinogenic erionite in Italy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:81-103. [PMID: 28339348 DOI: 10.1080/10937404.2016.1263586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Erionite is a zeolite representing a well-known health hazard. In fact, exposure of humans to its fibers has been unequivocally associated with occurrence of malignant mesothelioma. For this reason, a multi-methodological approach, based upon field investigation, morphological characterization, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) chemical analysis, and structure refinement through X-ray powder diffraction (XRPD), was applied to different samples of potentially carcinogenic erionite from Northern Italy. The studied crystals have a chemical composition ranging from erionite-Ca to erionite-Na and display variable morphologies, varying from prismatic, through acicular and fibrous, to extremely fibrous asbestiform habits. The fibrous samples were characterized by an unusual preferred partition of aluminum (Al) at tetrahedral site T1 instead of tetrahedral site T2. Further, a mismatch between the a-parameter of erionite-Ca and levyne-Ca that are intergrown in the asbestiform sample was detected. This misfit was coupled to a relevant micro-strain to maintain structure coherency at the boundary. Erionite occurs in 65% of the investigated sites, with an estimated quantity of 10 to 40 vol% of the associated minerals. The presence of this mineral is of concern for risk to human health, especially if one considers the vast number of quarries and mining-related activities that are operating in the zeolite host rocks. The discovery of fibrous and asbestiform erionite in Northern Italy suggests the need for a detailed risk assessment in all Italian areas showing the same potential hazard, with specific studies such as a quantification of the potentially respirable airborne fibers and targeted epidemiological surveillance.
Collapse
Affiliation(s)
- Matteo Giordani
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Paolo Ballirano
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
- c Laboratorio Fibre e Particolato Inorganico , Sapienza Università di Roma , Roma , Italy
| | - Alessandro Pacella
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
| | - Marco Cenni
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Matteo Boscardin
- d Museo di Archeologia e Scienze Naturali "G. Zannato" , Montecchio Maggiore , VI , Italy
| | - Laura Valentini
- e Dipartimento di Scienze Biomolecolari , Università di Urbino Carlo Bo , Urbino , Italy
| |
Collapse
|
15
|
Cangiotti M, Battistelli M, Salucci S, Falcieri E, Mattioli M, Giordani M, Ottaviani MF. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:171-187. [PMID: 28277034 DOI: 10.1080/15287394.2016.1275901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1<BV12<MD8<GF1, may be related to the structural modifications of the model membranes when interacting with these zeolite fibers.
Collapse
Affiliation(s)
- Michela Cangiotti
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Michela Battistelli
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Sara Salucci
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Elisabetta Falcieri
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | | |
Collapse
|