1
|
Krajnak K, Waugh S, Warren C, Chapman P, Xu X, Welcome D, Hammer M, Richardson D, Dong R. Force-induced tissue compression alters circulating hormone levels and biomarkers of peripheral vascular and sensorineural dysfunction in an animal model of hand-arm vibration syndrome. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:175-195. [PMID: 39565925 PMCID: PMC11696796 DOI: 10.1080/15287394.2024.2428599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Workers regularly using vibrating hand tools may develop a disorder referred to as hand-arm vibration syndrome (HAVS). HAVS is characterized by cold-induced vasospasms in the hands and fingers that result in blanching of the skin, loss of sensory function, pain, and reductions in manual dexterity. Exposure to vibration induces some of these symptoms. However, the soft tissues of the hands and fingers of workers are compressed as a result of the force generated when a worker grips a tool. The compression of these soft tissues might also contribute to the development of HAVS. The goal of this study was to use an established rat tail model to determine the mechanisms by which compression of the tail tissues affects (1) the ventral tail artery (VTA) and ventral tail nerves (VTN), (2) nerves and sensory receptors in the skin, (3) dorsal root ganglia (DRG), and (4) spinal cord. Tissue compression resulted in the following changes (1) circulating pituitary and steroid hormone concentrations, (2) expression of factors that modulate vascular function in the skin and tail artery, and (3) factors associated with nerve damage, DRG, and spinal cord. Some of these observed effects differed from those previously noted with vibration exposure. Based upon these findings, the effects of applied force and vibration are different. Studies examining the combination of these factors might provide data that may potentially be used to improve risk assessment and support revision of standards.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Christopher Warren
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Phillip Chapman
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Xueyan Xu
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Daniel Welcome
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Maryann Hammer
- Pathology and Physiology Research Branch and Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Pathology and Physiology Research Branch and Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Renguang Dong
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
2
|
Carrara E, Soliveri L, Poloni S, Bozzetto M, Campiglio CE. Effects of high-frequency mechanical stimuli on flow related vascular cell biology. Int J Artif Organs 2024; 47:590-601. [PMID: 39166431 PMCID: PMC11487902 DOI: 10.1177/03913988241268105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Mechanical forces related to blood pressure and flow patterns play a crucial role in vascular homeostasis. Perturbations in vascular stresses and strain resulting from changes in hemodynamic may occur in pathological conditions, leading to vascular dysfunction as well as in vascular prosthesis, arteriovenous shunt for hemodialysis and in mechanical circulation support. Turbulent-like blood flows can induce high-frequency vibrations of the vessel wall, and this stimulus has recently gained attention as potential contributors to vascular pathologies, such as development of intimal hyperplasia in arteriovenous fistula for hemodialysis. However, the biological response of vascular cells to this stimulus remains incompletely understood. This review provides an analysis of the existing literature concerning the impact of high-frequency stimuli on vascular cell morphology, function, and gene expression. Morphological and functional investigations reveal that vascular cells stimulated at frequencies higher than the normal heart rate exhibit alterations in cell shape, alignment, and proliferation, potentially leading to vessel remodeling. Furthermore, vibrations modulate endothelial and smooth muscle cells gene expression, affecting pathways related to inflammation, oxidative stress, and muscle hypertrophy. Understanding the effects of high-frequency vibrations on vascular cells is essential for unraveling the mechanisms underlying vascular diseases and identifying potential therapeutic targets. Nevertheless, there are still gaps in our understanding of the molecular pathways governing these cellular responses. Further research is necessary to elucidate these mechanisms and their therapeutic implications for vascular diseases.
Collapse
Affiliation(s)
- Elena Carrara
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Luca Soliveri
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sofia Poloni
- Department of Engineering and Applied Sciences, University of Bergamo, Dalmine, Italy
| | - Michela Bozzetto
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Chiara Emma Campiglio
- Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Italy
| |
Collapse
|
3
|
Krajnak K, Warren C, Xu X, Chapman P, Waugh S, Boots T, Welcome D, Dong R. Applied Force Alters Sensorineural and Peripheral Vascular Function in a Rat Model of Hand-Arm Vibration Syndrome. J Occup Environ Med 2024; 66:93-104. [PMID: 37903602 PMCID: PMC10921367 DOI: 10.1097/jom.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
OBJECTIVE This study described the effects of applied force (grip) on vascular and sensorineural function in an animal model of hand-arm vibration syndrome (HAVS). METHODS Rat tails were exposed to 0, 2, or 4 N of applied force 4 hr/d for 10 days. Blood flow and sensitivity to transcutaneous electrical stimulation and pressure were measured. RESULTS Applied force increased blood flow but reduced measures of arterial plasticity. Animals exposed to force tended to be more sensitive to 250-Hz electrical stimulation and pressure applied to the tail. CONCLUSIONS Effects of applied force on blood flow and sensation are different than those of vibration. Studies examining co-exposures to force and vibration will provide data that can be used to determine how these factors affect risk of workers developing vascular and sensorineural dysfunction (ie, HAVS).
Collapse
Affiliation(s)
- Kristine Krajnak
- From the Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Goggins KA, Thompson TJ, Lessel CE, Kelly EA, O'Hara DEL, Eger TR. The effects of standing foot-transmitted vibration on self-reported discomfort ratings. Work 2024; 78:153-165. [PMID: 38640185 DOI: 10.3233/wor-230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Occupational foot-transmitted vibration (FTV) exposure is common in industries like mining, construction, and agriculture, often leading to acute and chronic injuries. Vibration assessments require technical expertise and equipment which can be costly for employers to perform. Alternatively, researchers have observed that self-reported discomfort can be used as an effective indicator of injury risk. OBJECTIVE This study aimed to investigate the effect of standing FTV exposure on self-reported ratings of discomfort, and whether these subjective ratings differed by body area and exposure frequency. METHODS Participants (n = 30) were randomly exposed to standing FTV at six frequencies (25, 30, 35, 40, 45, and 50 Hz) for 20-45 seconds. Following each exposure, participants rated discomfort on a scale of 0-9 in four body areas: head and neck (HN), upper body (UB), lower body (LB), and total body. RESULTS Results indicated that participants experienced the most discomfort in the LB at higher frequencies (p < 0.001), consistent with the resonance of foot structures. The HN discomfort tended to decrease as the exposure frequency increased, although not statistically significant (p > 0.0167). The UB discomfort remained relatively low across all frequencies. CONCLUSIONS The study suggests a potential connection between resonant frequencies and discomfort, potentially indicating injury risk. Although self-reported discomfort is insufficient for directly assessing injury risk from FTV, it provides a simple method for monitoring potential musculoskeletal risks related to vibration exposure at resonant frequencies. While professional vibration assessment remains necessary, self-reported discomfort may act as an early indicated of vibration-induced injuries, aiding in implementing mitigation strategies.
Collapse
Affiliation(s)
- Katie A Goggins
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
| | - Taryn J Thompson
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- School of Natural Sciences, Laurentian University, Greater Sudbury ON, Canada
| | - Courtney E Lessel
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
| | - Elizabeth A Kelly
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- Bharti School of Engineering, Laurentian University, Greater Sudbury ON, Canada
| | - Dawson E L O'Hara
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- Bharti School of Engineering, Laurentian University, Greater Sudbury ON, Canada
| | - Tammy R Eger
- Centre for Research in Occupational Safety and Health, Laurentian University, Greater Sudbury ON, Canada
- Office of Research Services, Laurentian University, Greater Sudbury, ON, Canada
| |
Collapse
|
5
|
Dong RG, Warren C, Xu XS, Wu JZ, Welcome DE, Waugh S, Krajnak K. A novel rat-tail model for studying human finger vibration health effects. Proc Inst Mech Eng H 2023; 237:890-904. [PMID: 37345449 PMCID: PMC10557186 DOI: 10.1177/09544119231181246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
It has been hypothesized that the biodynamic responses of the human finger tissues to vibration are among the major stimuli that cause vibration health effects. Furthermore, the finger contact pressure can alter these effects. It is difficult to test these hypotheses using human subjects or existing animal models. The objective of this study was to develop a new rat-tail vibration model to investigate the combined effects of vibration and contact pressure and to identify their relationships with the biodynamic responses. Physically, the new exposure system was developed by adding a loading device to an existing rat-tail model. An analytical model of the rat-tail exposure system was proposed and used to formulate the methods for quantifying the biodynamic responses. A series of tests with six tails dissected from rat cadavers were conducted to test and evaluate the new model. The experimental and modeling results demonstrate that the new model behaves as predicted. Unlike the previous model, the vibration strain and stress of the rat tail does not depend primarily on the vibration response of the tail itself but on that of the loading device. This makes it possible to quantify and control the biodynamic responses conveniently and reliably by measuring the loading device response. This study also identified the basic characteristics of the tail biodynamic responses in the exposure system, which can be used to help design the experiments for studying vibration biological effects.
Collapse
Affiliation(s)
- Ren G Dong
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Christopher Warren
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Xueyan S Xu
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - John Z Wu
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Daniel E Welcome
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | - Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| |
Collapse
|
6
|
Krajnak K, Waugh S, Welcome D, Xu XS, Warren C, McKinney W, Dong RG. Effects of whole-body vibration on reproductive physiology in a rat model of whole-body vibration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:953-971. [PMID: 36165131 PMCID: PMC9885295 DOI: 10.1080/15287394.2022.2128954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Findings from epidemiological studies suggest that occupational exposure to whole-body vibration (WBV) may increase the risk of miscarriage and contribute to a reduction in fertility rates in both men and women. However, workers exposed to WBV may also be exposed to other risk factors that contribute to reproductive dysfunction. The goal of this experiment was to examine the effects of WBV on reproductive physiology in a rat model. Male and female rats were exposed to WBV at the resonant frequency of the torso (31.5 Hz, 0.3 g amplitude) for 4 hr/day for 10 days. WBV exposure resulted in a significant reduction in number of developing follicles, and decrease in circulating estradiol concentrations, ovarian luteinizing hormone receptor protein levels, and marked changes in transcript levels for several factors involved in follicular development, cell cycle, and steroidogenesis. In males, WBV resulted in a significant reduction in spermatids and circulating prolactin levels, elevation in number of males having higher circulating testosterone concentrations, and marked alterations in levels of transcripts associated with oxidative stress, inflammation, and factors involved in regulating the cell cycle. Based upon these findings data indicate that occupational exposure to WBV contributes to adverse alterations in reproductive physiology in both genders that may lead to reduction in fertility.
Collapse
Affiliation(s)
- K Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - S Waugh
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - D Welcome
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - X S Xu
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - C Warren
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - W McKinney
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - R G Dong
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
7
|
Abstract
This study aimed to investigate the acute effect of grip and feed exertions on the vascular system at the fingers during exposure to hand-arm vibration (HAV), and to identify which active hand force situation would have the most effect on finger vascular function. A total of 12 individuals attended the test, and each of them were subjected to eight sets of force-and-vibration situations: four with combinations of forces and vibration, and four control ones with only hand forces applied. The vibration stimulus was applied on the right hand at 2.75 m/s2 with a frequency of 125 Hz for three minutes, during which the application of grip and feed forces were set at either 10 N or 50 N. The weakening of the finger vascular function was reflected by a reduction in the finger blood flow (FBF) and finger skin temperature (FST). They were tested on both hands at fixed intervals before, during and after the exposure for in-time measurement. Hand forces resulted in clear reductions in FBF and FST in exposed right fingers whether the force was exerted solely or combined with vibration. The greater the hand force (especially grip force), the stronger the vascular response, while the additional reductions in FBF and FST from vibration were not significant. In the non-exposed left fingers, no significant changes in finger circulation occurred in response to force or vibration. Generally, vibration-induced acute finger vasoconstriction was affected by the hand forces, in which hand force seemed to play a more important part than vibration. A larger grip force would lead to a greater loss in the digital circulation than feed force. Thus, the level of hand force exerted on the tool handle should be limited to reduce the risk of harm from HAV.
Collapse
|
8
|
Dong RG, Wu JZ, Xu XS, Welcome DE, Krajnak K. A Review of Hand-Arm Vibration Studies Conducted by US NIOSH since 2000. VIBRATION 2021; 4:482-528. [PMID: 34414357 PMCID: PMC8371562 DOI: 10.3390/vibration4020030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies on hand-transmitted vibration exposure, biodynamic responses, and biological effects were conducted by researchers at the Health Effects Laboratory Division (HELD) of the National Institute for Occupational Safety and Health (NIOSH) during the last 20 years. These studies are systematically reviewed in this report, along with the identification of areas where additional research is needed. The majority of the studies cover the following aspects: (i) the methods and techniques for measuring hand-transmitted vibration exposure; (ii) vibration biodynamics of the hand-arm system and the quantification of vibration exposure; (iii) biological effects of hand-transmitted vibration exposure; (iv) measurements of vibration-induced health effects; (iv) quantification of influencing biomechanical effects; and (v) intervention methods and technologies for controlling hand-transmitted vibration exposure. The major findings of the studies are summarized and discussed.
Collapse
Affiliation(s)
- Ren G. Dong
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - John Z. Wu
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Xueyan S. Xu
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Daniel E. Welcome
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| |
Collapse
|
9
|
Krajnak K. Vibrotactile sensitivity testing for occupational and disease-induce peripheral neuropathies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:162-172. [PMID: 33719930 DOI: 10.1080/10937404.2021.1897911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The International Standard Organization (ISO) standard 13091-1 describes methods and procedures for performing the vibrotactile perception threshold (VPT) testing to diagnose changes in tactile sensory function associated with occupational exposures. However, the VPT test also has been used in the diagnosis of peripheral neuropathies associated with a number of disorders. This review examines the VPT test, variations in procedures that have been used, as well as disorders and diseases in which this test has been reliable for the detection of sensory changes. Mechanisms potentially underlying the changes in VPTs are also discussed along with procedural and subject/patient factors that may affect the interpretation of test results. Based upon the review of the literature, there are also suggestions for where additional research might improve the administration of this test, depending upon the subject/patient population and interpretation of data.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effect Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
10
|
Kim JH, Kim KA, Shin YJ, Kim H, Majid A, Bae ON. Methylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:266-277. [PMID: 29473788 DOI: 10.1080/15287394.2018.1440185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Endothelial cells (ECs) maintain the structure and function of blood vessels and are readily exposed to exogenous and endogenous toxic substances in the circulatory system. Bone marrow-derived endothelial progenitor cells (EPCs) circulate in the blood and differentiate to EC, which are known to participate in angiogenesis and regeneration of injured vessels. Dysfunction in EPC contributes to cardiovascular complications in patients with diabetes, but the precise molecular mechanisms underlying diabetic EPC abnormalities are not completely understood. The aim of this study was to investigate the mechanisms underlying diabetic EPC dysfunction using methylglyoxal (MG), an endogenous toxic diabetic metabolite. Data demonstrated that MG decreased cell viability and protein expression of vascular endothelial growth factor receptor (VEGFR)-2 associated with functional impairment of tube formation in EPC. The generation of advanced glycation end (AGE) products was increased in EPC following exposure to MG. Blockage of receptor for AGE (RAGE) by FPS-ZM1, a specific antagonist for RAGE, significantly reversed the decrease of VEGFR-2 protein expression and angiogenic dysfunction in MG-incubated EPC. Taken together, data demonstrated that MG induced angiogenic impairment in EPC via alterations in the AGE/RAGE-VEGFR-2 pathway which may be utilized in the development of potential therapeutic and preventive targets for diabetic vascular complications.
Collapse
Affiliation(s)
- Jeong-Hyeon Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Kyeong-A Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Young-Jun Shin
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Haram Kim
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Arshad Majid
- b Sheffield Institute for Translational Neuroscience , University of Sheffield , Sheffield , England
| | - Ok-Nam Bae
- a College of Pharmacy Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| |
Collapse
|
11
|
Krajnak K. Health effects associated with occupational exposure to hand-arm or whole body vibration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:320-334. [PMID: 30583715 PMCID: PMC6415671 DOI: 10.1080/10937404.2018.1557576] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Workers in a number of different occupational sectors are exposed to workplace vibration on a daily basis. This exposure may arise through the use of powered-hand tools or hand-transmitted vibration (HTV). Workers might also be exposed to whole body vibration (WBV) by driving delivery vehicles, earth moving equipment, or through use of tools that generate vibration at low dominant frequencies and high amplitudes, such as jackhammers. Occupational exposure to vibration has been associated with an increased risk of musculoskeletal pain in the back, neck, hands, shoulders, and hips. Occupational exposure may also contribute to the development of peripheral and cardiovascular disorders and gastrointestinal problems. In addition, there are more recent data suggesting that occupational exposure to vibration may enhance the risk of developing certain cancers. The aim of this review is to provide an assessment of the occupations where exposure to vibration is most prevalent, and a description of the adverse health effects associated with occupational exposure to vibration. This review will examine (1) various experimental methods used to measure and describe the characteristics of vibration generated by various tools and vehicles, (2) the etiology of vibration-induced disorders, and (3) how these data were employed to assess and improve intervention strategies and equipment that reduces the transmission of vibration to the body. Finally, there is a discussion of the research gaps that need to be investigated to further reduction in the incidence of vibration-induced illnesses and injuries.
Collapse
Affiliation(s)
- Kristine Krajnak
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|