1
|
Shevtsov M, Pitkin E, Combs SE, Yudintceva N, Nazarov D, Meulen GVD, Preucil C, Akkaoui M, Pitkin M. Biocompatibility Analysis of the Silver-Coated Microporous Titanium Implants Manufactured with 3D-Printing Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1876. [PMID: 39683264 PMCID: PMC11643975 DOI: 10.3390/nano14231876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
3D-printed microporous titanium scaffolds enjoy good biointegration with the residuum's soft and bone tissues, and they promote excellent biomechanical properties in attached prostheses. Implant-associated infection, however, remains a major clinical challenge. Silver-based implant coatings can potentially reduce bacterial growth and inhibit biofilm formation, thereby reducing the risk of periprosthetic infections. In the current study, a 1-µm thick silver coating was prepared on the surface of a 3D-printed microporous titanium alloy with physical vapor deposition (PVD), with a final silver content of 1.00 ± 02 mg/cm2. Cell viability was evaluated with an MTT assay of MC3T3-E1 osteoblasts and human dermal fibroblasts cultured on the surface of the implants, and showed low cytotoxicity for cells during the 14-day follow-up period. Quantitative real-time polymerase chain reaction (RT-PCR) analysis of the relative gene expression of the extracellular matrix components (fibronectin, vitronectin, type I collagen) and cell adhesion markers (α2, α5, αV, β1 integrins) in dermal fibroblasts showed that cell adhesion was not reduced by the silver coating of the microporous implants. An RT-PCR analysis of gene expression related to osteogenic differentiation, including TGF-β1, SMAD4, osteocalcin, osteopontin, and osteonectin in MC3T3-E1 osteoblasts, demonstrated that silver coating did not reduce the osteogenic activity of cells and, to the contrary, enhanced the activity of the TGF-β signaling pathway. For representative sample S5 on day 14, the gene expression levels were 7.15 ± 0.29 (osteonectin), 6.08 ± 0.12 (osteocalcin), and 11.19 ± 0.77 (osteopontin). In conclusion, the data indicate that the silver coating of the microporous titanium implants did not reduce the biointegrative or osteoinductive properties of the titanium scaffold, a finding that argues in favor of applying this coating in designing personalized osseointegrated implants.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia;
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Emil Pitkin
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia;
| | - Denis Nazarov
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | | | - Chris Preucil
- Movora, St. Augustine, FL 32095, USA; (G.V.D.M.); (C.P.)
| | | | - Mark Pitkin
- Department of Orthopaedics and Rehabilitation Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Poly-Orth International, Sharon, MA 02067, USA
| |
Collapse
|
2
|
He J, Ma Y, Niu X, Pei J, Yan R, Xu F, Ma J, Ma X, Jia S, Ma W. Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine. Toxicology 2024; 502:153734. [PMID: 38290605 DOI: 10.1016/j.tox.2024.153734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Silver nanoparticles (AgNPs) are used increasingly often in the biomedical field, but their potential deleterious effects on the cardiovascular system remain to be elucidated. The primary aim of this study was to evaluate the toxic effects, and the underlying mechanisms of these effects, of AgNPs on human umbilical vein endothelial cells (HUVECs), as well as the protective role of N-acetylcysteine (NAC) against cytotoxicity induced by AgNPs. In this study, we found that exposure to AgNPs affects the morphology and function of endothelial cells which manifests as decreased cell proliferation, migration, and angiogenesis ability. Mechanistically, AgNPs can induce excessive cellular production of reactive oxygen species (ROS), leading to damage to cellular sub-organs such as mitochondria and lysosomes. More importantly, our data suggest that AgNPs causes autophagy defect, inhibits mitophagy, and finally activates the mitochondria-mediated apoptosis signaling pathway and evokes cell death. Interestingly, treatment with ROS scavenger-NAC can effectively suppress AgNP-induced endothelial damage.Our results indicate that ROS-mediated mitochondria-lysosome injury and autophagy dysfunction are potential factors of endothelial toxicity induced by AgNPs. This study may provide new evidence for the cardiovascular toxicity of AgNPs and serve as a reference for the safe use of nanoparticles(NPs) in the future.
Collapse
Affiliation(s)
- Jing He
- Department of Geriatric and Special Medicine, General Hospital of Ningxia Medical University, Yinchuan 75004, Republic of China; School of Clinical Medicine, Ningxia Medical University, Yinchuan 75004, Republic of China
| | - Yunyun Ma
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 75004, Republic of China; Heart Centre, General Hospital of Ningxia Medical University, Yinchuan 75004, Republic of China
| | - Xudong Niu
- Yinchuan Maternity and Child Care Hospital, Yinchuan 75004, Republic of China
| | - Jiansheng Pei
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 75004, Republic of China
| | - Ru Yan
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan 75004, Republic of China
| | - Fangjing Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 75004, Republic of China
| | - Jing Ma
- Department of Geriatric and Special Medicine, General Hospital of Ningxia Medical University, Yinchuan 75004, Republic of China
| | - Xiaojuan Ma
- Department of Geriatric and Special Medicine, General Hospital of Ningxia Medical University, Yinchuan 75004, Republic of China
| | - Shaobin Jia
- Heart Centre, General Hospital of Ningxia Medical University, Yinchuan 75004, Republic of China.
| | - Wanrui Ma
- Department of Geriatrics, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523000, Republic of China.
| |
Collapse
|
3
|
Bessa MJ, Brandão F, Rosário F, Moreira L, Reis AT, Valdiglesias V, Laffon B, Fraga S, Teixeira JP. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:67-96. [PMID: 36692141 DOI: 10.1080/10937404.2023.2166638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relationship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)particulate material toxicity assessment, this review provides an overview of the available human respiratory models and exposure systems for in vitro testing, advantages, limitations, and existing investigations using models of different complexity. A brief overview of the human respiratory system, pathway and fate of inhaled (nano)particles is also presented.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fernanda Rosário
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Luciana Moreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Ana Teresa Reis
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Departamento de Psicología, Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
4
|
Assar DH, Mokhbatly AAA, Ghazy EW, Elbialy ZI, Gaber AA, Hassan AA, Nabil A, Asa SA. Silver nanoparticles induced hepatoxicity via the apoptotic/antiapoptotic pathway with activation of TGFβ-1 and α-SMA triggered liver fibrosis in Sprague Dawley rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80448-80465. [PMID: 35716303 PMCID: PMC9596550 DOI: 10.1007/s11356-022-21388-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Despite the extraordinary use of silver nanoparticles (AgNPs) in medicinal purposes and the food industry, there is rising worry about potential hazards to human health and the environment. The existing study aims to assess the hepatotoxic effects of different dosages of AgNPs by evaluating hematobiochemical parameters, oxidative stress, liver morphological alterations, immunohistochemical staining, and gene expression to clarify the mechanism of AgNPs' hepatic toxic potential. Forty male Sprague Dawley rats were randomly assigned into control and three AgNPs intraperitoneally treated groups 0.25, 0.5, and 1 mg/kg b.w. daily for 15 and 30 days. AgNP exposure reduced body weight, caused haematological abnormalities, and enhanced hepatic oxidative and nitrosative stress with depletion of the hepatic GSH level. Serum hepatic injury biomarkers with pathological hepatic lesions where cholangiopathy emerges as the main hepatic alteration in a dosage- and duration-dependent manner were also elevated. Furthermore, immunohistochemical labelling of apoptotic markers demonstrated that Bcl-2 was significantly downregulated while caspase-3 was significantly upregulated. In conclusion, the hepatotoxic impact of AgNPs may be regulated by two mechanisms, implying the apoptotic/antiapoptotic pathway via raising BAX and inhibiting Bcl-2 expression levels in a dose-dependent manner. The TGF-β1 and α-SMA pathway which triggered fibrosis with incorporation of iNOS which consequently activates the inflammatory process were also elevated. To our knowledge, there has been no prior report on the experimental administration of AgNPs in three different dosages for short and long durations in rats with the assessment of Bcl-2, BAX, iNOS, TGF-β1, and α-SMA gene expressions.
Collapse
Affiliation(s)
- Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Abd-Allah A. Mokhbatly
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Emad W. Ghazy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ahmed A. Gaber
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ayman A. Hassan
- High Technological Institute of Applied Health Sciences, Egypt Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansora Egypt
| | - Ahmed Nabil
- Beni-Suef University, Beni-Suef, Egypt
- Egypt Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansora Egypt
| | - Samah Abou Asa
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
5
|
Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022; 23:7597. [PMID: 35886945 PMCID: PMC9322368 DOI: 10.3390/ijms23147597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology is one of the scientific advances in technology. Nanoparticles (NPs) are small materials ranging from 1 to 100 nm. When the shape of the supplied nanoparticles changes, the physiological response of the cells can be very different. Several characteristics of NPs such as the composition, surface chemistry, surface charge, and shape are also important parameters affecting the toxicity of nanomaterials. This review covered specific topics that address the effects of NPs on nanomedicine. Furthermore, mechanisms of different types of nanomaterial-induced cytotoxicities were described. The distributions of different NPs in organs and their adverse effects were also emphasized. This review provides insight into the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology. The content may also be of interest to a broad range of scientists.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiang-Ying Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | | | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
| | - Ju-Ku Mo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hung-Yun Lin
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
| |
Collapse
|
6
|
Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. NANOMATERIALS 2022; 12:nano12132316. [PMID: 35808152 PMCID: PMC9268743 DOI: 10.3390/nano12132316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Nanomaterials (NMs) solve specific problems with remarkable results in several industrial and scientific areas. Among NMs, silver nanoparticles (AgNPs) have been extensively employed as drug carriers, medical diagnostics, energy harvesting devices, sensors, lubricants, and bioremediation. Notably, they have shown excellent antimicrobial, anticancer, and antiviral properties in the biomedical field. The literature analysis shows a selective cytotoxic effect on cancer cells compared to healthy cells, making its potential application in cancer treatment evident, increasing the need to study the potential risk of their use to environmental and human health. A large battery of toxicity models, both in vitro and in vivo, have been established to predict the harmful effects of incorporating AgNPs in these numerous areas or those produced due to involuntary exposure. However, these models often report contradictory results due to their lack of standardization, generating controversy and slowing the advances in nanotoxicology research, fundamentally by generalizing the biological response produced by the AgNP formulations. This review summarizes the last ten years’ reports concerning AgNPs’ toxicity in cellular respiratory system models (e.g., mono-culture models, co-cultures, 3D cultures, ex vivo and in vivo). In turn, more complex cellular models represent in a better way the physical and chemical barriers of the body; however, results should be used carefully so as not to be misleading. The main objective of this work is to highlight current models with the highest physiological relevance, identifying the opportunity areas of lung nanotoxicology and contributing to the establishment and strengthening of specific regulations regarding health and the environment.
Collapse
|
7
|
Llewellyn SV, Parak WJ, Hühn J, Burgum MJ, Evans SJ, Chapman KE, Jenkins GJS, Doak SH, Clift MJD. Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines in vitro. Nanotoxicology 2022; 16:52-72. [PMID: 35085458 DOI: 10.1080/17435390.2022.2030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human ENP exposure is inevitable and the novel, size-dependent physicochemical properties that enable ENPs to be beneficial in innovative technologies are concomitantly causing heightened public concerns as to their potential adverse effects upon human health. This study aims to deduce the mechanisms associated with potential ENP mediated (geno)toxicity and impact upon telomere integrity, if any, of varying concentrations of both ∼16 nm (4.34 × 10-3 to 17.36 × 10-3 mg/mL) Gold (Au) and ∼14 nm (0.85 × 10-5 to 3.32 × 10-5 mg/mL) Silver (Ag) ENPs upon two commonly used lung epithelial cell lines, 16HBE14o- and A549. Following cytotoxicity analysis (via Trypan Blue and Lactate Dehydrogenase assay), two sub-lethal concentrations were selected for genotoxicity analysis using the cytokinesis-blocked micronucleus assay. Whilst both ENP types induced significant oxidative stress, Ag ENPs (1.66 × 10-5 mg/mL) did not display a significant genotoxic response in either epithelial cell lines, but Au ENPs (8.68 × 10-3 mg/mL) showed a highly significant 2.63-fold and 2.4-fold increase in micronucleus frequency in A549 and 16HBE14o- cells respectively. It is hypothesized that the DNA damage induced by acute 24-h Au ENP exposure resulted in a cell cycle stall indicated by the increased mononuclear cell fraction (>6.0-fold) and cytostasis level. Albeit insignificant, a small reduction in telomere length was observed following acute exposure to both ENPs which could indicate the potential for ENP mediated telomere attrition. Finally, from the data shown, both in vitro lung cell cultures (16HBE14o- and A549) are equally as suitable and reliable for the in vitro ENP hazard identification approach adopted in this study.
Collapse
Affiliation(s)
- Samantha V Llewellyn
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Wolfgang J Parak
- Faculty of Physics, Centre of Hybrid Nanostructures, Universität Hamburg, Hamburg, Germany
| | - Jonas Hühn
- Faculty of Physics, Philipps Universität Marburg, Marburg, Germany
| | - Michael J Burgum
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Sciences 1, Swansea University Medical School, Swansea, UK
| |
Collapse
|
8
|
In Vitro Cyto- and Genotoxicity Assessment of Antibacterial Paints with Triclosan and Isoborneol. TOXICS 2022; 10:toxics10020058. [PMID: 35202245 PMCID: PMC8877867 DOI: 10.3390/toxics10020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Surfaces with antimicrobial properties are gaining notoriety as an efficient method to avoid surface contamination. Self-disinfecting paints are a promising strategy towards cleaner indoor environments by preventing the colonization of walls with microorganisms. However, its widespread use needs an appropriate toxicological safety evaluation due to the potential for biological disturbance associated to its biocidal activity. In this work, the cyto- and genotoxic assessment of two self-disinfecting paints containing the antimicrobial substances triclosan (TCS) and isoborneol (ISB) is performed. HaCaT and A549 cell lines models were selected for the in vitro assessment. To evaluate the cytotoxicity, tests by direct contact and on extracts obtained from leaching were performed following ISO 10993, whereas the genotoxicity was assessed by comet assay and cytokinesis-block micronucleus (CBMN) assay. The results showed low levels of cyto- and genotoxicity under the models and conditions tested, indicating that these substances have commercial potential.
Collapse
|
9
|
Hazard Assessment of Benchmark Metal-Based Nanomaterials Through a Set of In Vitro Genotoxicity Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:351-375. [DOI: 10.1007/978-3-030-88071-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Li J, Chang X, Shang M, Niu S, Zhang W, Zhang B, Huang W, Wu T, Zhang T, Tang M, Xue Y. Mitophagy-lysosomal pathway is involved in silver nanoparticle-induced apoptosis in A549 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111463. [PMID: 33130480 DOI: 10.1016/j.ecoenv.2020.111463] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 05/11/2023]
Abstract
With the increasing use of silver nanoparticles (AgNPs) in biological materials, the cytotoxicity caused by these particles has attracted much attention. However, the molecular mechanism underlying AgNP cytotoxicity remains unclear. In this study, we aimed to systematically investigate the toxicity induced by AgNP exposure to the lung adenocarcinoma A549 cell line at the subcellular and signaling pathway levels and elucidate the related molecular mechanism. The survival rate of cells exposed to AgNPs at 0, 20, 40, 80, and 160 μg/mL for 24 or 48 h decreased in a dose- and time-dependent manner. AgNPs induced autophagy and mitophagy, determined by the transmission electron microscopy investigation and upregulation of LC3 II/I, p62, PINK1, and Parkin expression levels. AgNP treatment induced lysosomal injury, including the decline of lysosomal membrane integrity and increase in cathepsin B level. The decreased in mitochondrial membrane potential, along with upregulation of cytochrome c, caspases 9 and 3, and BAX/BCL2, further suggested that mitochondrial injury were involved in AgNP-induced apoptosis. In addition, mitochondrial injury may further lead to excessive production of reactive oxygen species and oxidative/ antioxidant imbalance. The results suggested that AgNPs could regulate autophagy via mitochondrial and lysosome injury in A549 cells. The information of the molecular mechanism will provide an experimental basis for the safe application of nanomaterials.
Collapse
Affiliation(s)
- Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenli Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Bangyong Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
11
|
Rosário F, Duarte IF, Pinto RJB, Santos C, Hoet PHM, Oliveira H. Biodistribution and pulmonary metabolic effects of silver nanoparticles in mice following acute intratracheal instillations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2301-2314. [PMID: 32885333 DOI: 10.1007/s11356-020-10563-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The respiratory tract is the route of entry for accidentally inhaled AgNPs, which can reach the lungs and redistribute to other main organs through systemic circulation. In the present work, we aimed to evaluate silver biodistribution and biological effects after 1 or 2 intratracheal instillations (IT) of two differently sized PVP-coated AgNPs (5 and 50 nm-3 mg/kg) and ionic silver (AgNO3-1 mg/kg bw) in mice. Furthermore, nuclear magnetic resonance (NMR) metabolomics was applied to unveil pulmonary metabolic variations. Animals exposed to 5 nm AgNP (AgNP5) showed higher levels of ionic silver in organs, especially in the lung, spleen, kidney and liver, while animals exposed to 50 nm AgNP (AgNP50) showed higher levels of silver in the blood. Animals exposed to AgNP50 excreted higher amounts of silver than those exposed to AgNP5, which is consistent with higher tissue accumulation of silver in animals exposed to the latter. Lung metabolic profiling revealed several Ag-induced alterations in metabolites involved in different pathways, such as glycolysis and tricarboxylic acid (TCA) cycle, amino acid and phospholipid metabolism, and antioxidant defense. Notably, most of the metabolic changes observed after 1 IT were absent in animals subjected to 2 IT of AgNO3, or reversed for AgNPs, suggesting adaptation mechanisms to cope with the initial insult and recover homeostasis. Graphical abstract.
Collapse
Affiliation(s)
- Fernanda Rosário
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-093, Aveiro, Portugal.
| | - Ricardo J B Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-093, Aveiro, Portugal
| | - Conceição Santos
- Department of Biology, LAQV/REQUIMTE, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Peter H M Hoet
- Occupational and Environmental Toxicology, KU Leuven, ON1 Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
12
|
Roszak J, Smok-Pieniążek A, Spryszyńska S, Kowalczyk K, Domeradzka-Gajda K, Świercz R, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Cieślak M, Puchowicz D, Stępnik M. Cytotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with selected aluminium compounds, parabens or phthalates. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122442. [PMID: 32193110 DOI: 10.1016/j.jhazmat.2020.122442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 05/23/2023]
Abstract
This study was undertaken to assess cytotoxic effects of selected aluminium compounds, parabens and phthalates in combination with silver nanoparticles (AgNP, 15 and 45 nm by STEM, Ag15 and Ag45, respectively) on cell lines of the human breast epithelium, normal (MCF-10A) and transformed (MDA-MB-231 and MCF-7). Combination indices were the most spectacular at effective concentrations (ED) inducing 25 % decrease in viability for the combinations of Ag15 with AlCl3 for MDA-MB-231 cells or aluminium zirconium tetrachlorohydrex Gly (AlZr) for MCF-10A and MCF-7 cells, where rather strong antagonism was revealed. As the ED values increased, those effects were enhanced (e.g. Ag15+AlCl3 for MDA-MB-231) or reversed into synergism (e.g. Ag15+AlZr for MCF-7). Another strong effect was observed for aluminium chloride hydroxide, which increasing ED, induced synergistic effect with both Ag15 and Ag45 on MCF-10A cells. Another interesting synergistic effect was observed for DBPh, but only in combination with Ag45 on MCF-10A and MCF-7. The results on cytotoxicity, cell cycle and oxidative stress induction indicate complex response of the cell lines to combined treatment with silver nanoparticles and the chemicals, which were influenced by diverse factors, such as physico-chemical characteristics of AgNP, method of their synthesis, concentrations used, and finally cell type.
Collapse
Affiliation(s)
- J Roszak
- Toxicology and Carcinogenesis Dept, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - A Smok-Pieniążek
- Toxicology and Carcinogenesis Dept, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - S Spryszyńska
- Toxicology and Carcinogenesis Dept, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - K Kowalczyk
- Toxicology and Carcinogenesis Dept, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - K Domeradzka-Gajda
- Toxicology and Carcinogenesis Dept, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - R Świercz
- Toxicology and Carcinogenesis Dept, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - J Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - E Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - K Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - G Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - M Cieślak
- Scientific Department of Unconventional Technologies and Textiles, Łukasiewicz-Textile Research Institute, Lodz, Poland
| | - D Puchowicz
- Scientific Department of Unconventional Technologies and Textiles, Łukasiewicz-Textile Research Institute, Lodz, Poland
| | - M Stępnik
- Toxicology and Carcinogenesis Dept, Nofer Institute of Occupational Medicine, Lodz, Poland.
| |
Collapse
|
13
|
Kobos L, Alqahtani S, Xia L, Coltellino V, Kishman R, McIlrath D, Perez-Torres C, Shannahan J. Comparison of silver nanoparticle-induced inflammatory responses between healthy and metabolic syndrome mouse models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:249-268. [PMID: 32281499 PMCID: PMC7493428 DOI: 10.1080/15287394.2020.1748779] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silver nanoparticles (AgNPs) are utilized in surgical implants and medical textiles, thus providing access to the circulation. While research has been conducted primarily in healthy models, AgNP-induced toxicity evaluations in disease conditions are critical, as many individuals have preexisting conditions. Specifically, over 20% of United States adults suffer from metabolic syndrome (MetS). It was hypothesized that MetS may increase susceptibility to AgNP-mediated toxicity due to induction of differential inflammation and altered biodistribution. Mice were injected with 2 mg/kg AgNPs, and organs assessed for inflammatory gene expression (TNF-α, CXCL1, CXCL2, CCL2, TGF-β, HO-1, IL-4, IL-13), and Ag content. AgNPs were determined to induce differential inflammation in healthy and MetS mice. While AgNP exposure increased TNF-α, CXCL1, TGF-β, HO-1, and IL-4 expression within healthy mouse spleens, MetS-treated animals demonstrated decreased CXCL1, IL-4, and IL-13 expression. Healthy and MetS mice livers exhibited similar inflammatory responses to one another. AgNPs localized primarily to the liver and spleen, although Ag was present in all examined organs. In organs of minor AgNP deposition, such as kidney, gene expression was variable. Induction of inflammatory genes did not correspond with biodistribution, suggesting disease-related variations in AgNP-mediated adverse responses. These findings indicate that disease may influence inflammation and biodistribution, impacting AgNP clinical applications.
Collapse
Affiliation(s)
- Lisa Kobos
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Saeed Alqahtani
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- National Center for Pharmaceuticals, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11461, Saudi Arabia
| | - Li Xia
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Vincent Coltellino
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Riley Kishman
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel McIlrath
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Perez-Torres
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jonathan Shannahan
- School of Health Sciences, College of Human and Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Address correspondence to: Dr. Jonathan Shannahan, School of Health Sciences, College of Human and Health Sciences, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
García-Rodríguez A, Rubio L, Vila L, Xamena N, Velázquez A, Marcos R, Hernández A. The Comet Assay as a Tool to Detect the Genotoxic Potential of Nanomaterials. NANOMATERIALS 2019; 9:nano9101385. [PMID: 31569740 PMCID: PMC6835278 DOI: 10.3390/nano9101385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
The interesting physicochemical characteristics of nanomaterials (NMs) has brought about their increasing use and, consequently, their increasing presence in the environment. As emergent contaminants, there is an urgent need for new data about their potential side-effects on human health. Among their potential effects, the potential for DNA damage is of paramount relevance. Thus, in the context of the EU project NANoREG, the establishment of common robust protocols for detecting genotoxicity of NMs became an important aim. One of the developed protocols refers to the use of the comet assay, as a tool to detect the induction of DNA strand breaks. In this study, eight different NMs—TiO2NP (2), SiO2NP (2), ZnONP, CeO2NP, AgNP, and multi-walled carbon nanotubes (MWCNT)—were tested using two different human lung epithelial cell lines (A549 and BEAS-2B). The comet assay was carried out with and without the use of the formamidopyrimidine glycosylase (FPG) enzyme to detect the induction of oxidatively damaged DNA bases. As a high throughput approach, we have used GelBond films (GBF) instead of glass slides, allowing the fitting of 48 microgels on the same GBF. The results confirmed the suitability of the comet assay as a powerful tool to detect the genotoxic potential of NMs. Specifically, our results indicate that most of the selected nanomaterials showed mild to significant genotoxic effects, at least in the A549 cell line, reflecting the relevance of the cell line used to determine the genotoxic ability of a defined NM.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de los Caballeros 50000, Dominican Republic.
| | - Laura Vila
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Noel Xamena
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Antonia Velázquez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Alba Hernández
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Campos CF, Morelli S, De Campos Júnior EO, Santos VSV, De Morais CR, Cunha MC, Souto HN, Pavanin LA, Bonetti AM, Pereira BB. Assessment of the genotoxic potential of water courses impacted by wastewater treatment effluents using micronucleus assay in plants from the specie s Tradescantia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:752-759. [PMID: 31362592 DOI: 10.1080/15287394.2019.1648345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water pollution and the increase in genotoxic consequences in aquatic environments are well documented indicating the necessity and importance of biomonitoring programs. The objective of the present study was to determine the environmental quality of water resources and genotoxic potential of materials present within water samples obtained from the Perdizes River and the Mumbuca Stream, located in a region of discharge of wastewater treatment effluents using Tradescantia micronucleus assay (Trad - MCN). Water samples were collected from different locations up and downstream of the wastewater treatment plant during rainy season and subsequently submitted to physico-chemical analysis and Trad-MCN bioassay. The spatial distribution of the physico-chemical parameters assessed suggested that discharges of wastewater treatment effluents reduced water quality at all sites examined. Further, exposure to wastewater treatment effluents produced genotoxic effects on tetrads of Tradescantia pallida. These results reinforce the sensitivity of the Trad-MCN bioassay and its potential application in water quality monitoring programs concomitant with physicochemical evaluation.
Collapse
Affiliation(s)
- Carlos Fernando Campos
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Sandra Morelli
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | | | - Vanessa Santana Vieira Santos
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Cássio Resende De Morais
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Matheus Campos Cunha
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Henrique Nazareth Souto
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Luiz Alfredo Pavanin
- Department of Environmental Chemistry, Federal University of Uberlândia, Institute of Chemistry , Uberlândia , Minas Gerais , Brazil
| | - Ana Maria Bonetti
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
| | - Boscolli Barbosa Pereira
- Department of Genetics, Federal University of Uberlândia, Institute of Biotechnology , Uberlândia , Minas Gerais , Brazil
- Department of Environmental Health, Federal University of Uberlândia, Institute of Geography , Uberlândia , Minas Gerais , Brazil
| |
Collapse
|