1
|
Kucukakcali Z, Colak C, Gozukara Bag HG, Balikci Cicek I, Ozhan O, Yildiz A, Danis N, Koc A, Parlakpinar H, Akbulut S. Modeling Based on Ensemble Learning Methods for Detection of Diagnostic Biomarkers from LncRNA Data in Rats Treated with Cis-Platinum-Induced Hepatotoxicity. Diagnostics (Basel) 2023; 13:1583. [PMID: 37174973 PMCID: PMC10177870 DOI: 10.3390/diagnostics13091583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The first aim of this study is to perform bioinformatic analysis of lncRNAs obtained from liver tissue samples from rats treated with cisplatin hepatotoxicity and without pathology. Another aim is to identify possible biomarkers for the diagnosis/early diagnosis of hepatotoxicity by modeling the data obtained from bioinformatics analysis with ensemble learning methods. METHODS In the study, 20 female Sprague-Dawley rats were divided into a control group and a hepatotoxicity group. Liver samples were taken from rats, and transcriptomic and histopathological analyses were performed. The dataset achieved from the transcriptomic analysis was modeled with ensemble learning methods (stacking, bagging, and boosting). Modeling results were evaluated with accuracy (Acc), balanced accuracy (B-Acc), sensitivity (Se), specificity (Sp), positive predictive value (Ppv), negative predictive value (Npv), and F1 score performance metrics. As a result of the modeling, lncRNAs that could be biomarkers were evaluated with variable importance values. RESULTS According to histopathological and immunohistochemical analyses, a significant increase was observed in the sinusoidal dilatation and Hsp60 immunoreactivity values in the hepatotoxicity group compared to the control group (p < 0.0001). According to the results of the bioinformatics analysis, 589 lncRNAs showed different expressions in the groups. The stacking model had the best classification performance among the applied ensemble learning models. The Acc, B-Acc, Se, Sp, Ppv, Npv, and F1-score values obtained from this model were 90%, 90%, 80%, 100%, 100%, 83.3%, and 88.9%, respectively. lncRNAs with id rna-XR_005492522.1, rna-XR_005492536.1, and rna-XR_005505831.1 with the highest three values according to the variable importance obtained as a result of stacking modeling can be used as predictive biomarker candidates for hepatotoxicity. CONCLUSIONS Among the ensemble algorithms, the stacking technique yielded higher performance results as compared to the bagging and boosting methods on the transcriptomic data. More comprehensive studies can support the possible biomarkers determined due to the research and the decisive results for the diagnosis of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Harika Gozde Gozukara Bag
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Ipek Balikci Cicek
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (O.O.)
| | - Azibe Yildiz
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey;
| | - Nefsun Danis
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (N.D.); (A.K.)
| | - Ahmet Koc
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (N.D.); (A.K.)
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (O.O.)
| | - Sami Akbulut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
- Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
2
|
Gu S, Jiang M, Zhang B. Microcystin-LR in Primary Liver Cancers: An Overview. Toxins (Basel) 2022; 14:toxins14100715. [PMID: 36287983 PMCID: PMC9611980 DOI: 10.3390/toxins14100715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
The cyanobacterial blooms produced by eutrophic water bodies have become a serious environmental issue around the world. After cellular lysing or algaecide treatment, microcystins (MCs), which are regarded as the most frequently encountered cyanobacterial toxins in fresh water, are released into water. Among all the variants of MCs, MC-LR has been widely studied due to its severe hepatotoxicity. Since 1992, various studies have identified the important roles of MC-LR in the origin and progression of primary liver cancers (PLCs), although few reviews have focused on it. Therefore, this review aims to summarize the major achievements and shortcomings observed in the past few years. Based on the available literature, the mechanisms of how MC-LR induces or promotes PLCs are elucidated in this review. This review aims to enhance our understanding of the role that MC-LR plays in PLCs and provides a rational approach for future applications.
Collapse
Affiliation(s)
- Shen Gu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Correspondence: ; Tel.: +86-0571-56007664
| | - Mingxuemei Jiang
- Institute of Scientific and Technical Information of Zhejiang Province, Hangzhou 310001, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
3
|
Du C, Zheng S, Yang Y, Feng X, Chen J, Tang Y, Wang H, Yang F. Chronic exposure to low concentration of MC-LR caused hepatic lipid metabolism disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113649. [PMID: 35605325 DOI: 10.1016/j.ecoenv.2022.113649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-LR (MC-LR), a potent hepatotoxin can cause liver damages. However, research on hepatic lipid metabolism caused by long-term exposure to environmental concentrations MC-LR is limited. In the current study, mice were exposed to various low concentrations of MC-LR (0, 1, 30, 60, 90, 120 μg/L in the drinking water) for 9 months. The general parameters, serum and liver lipids, liver tissue pathology, lipid metabolism-related genes and proteins of liver were investigated. The results show that chronic MC-LR exposure had increased the levels of triglyceride (TG) and total cholesterol (TC) in serum and liver. In addition, histological observation revealed that hepatic lobules were disordered with obvious inflammatory cell infiltration and lipid droplets. More importantly, the mRNA and proteins expression levels of lipid synthesis-related nuclear sterol regulatory element binding protein-1c (nSREBP-1c), SREBP-1c, cluster of differentiation 36 (CD36), acetyl-CoA-carboxylase1 (ACC1), stearoyl-CoA desaturase1 (SCD1) and fatty acid synthase (FASN) were increased in MC-LR treated groups, the expression levels of fatty acids β-oxidation related genes peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) was decreased after exposure to 60-120 μg/L MC-LR. Furthermore, the inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were higher than that in the control group. All the findings indicated that mice were exposed to chronic low concentrations MC-LR caused liver inflammation and hepatic lipid metabolism disorder .
Collapse
Affiliation(s)
- Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Shuilin Zheng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Jihua Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yan Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Li W, Hu X, Huang X. Long intergenic non-protein coding RNA 847 promotes laryngeal squamous cell carcinoma progression through the microRNA-181a-5p/zinc finger E-box binding homeobox 2 axis. Bioengineered 2022; 13:9987-10000. [PMID: 35435130 PMCID: PMC9161931 DOI: 10.1080/21655979.2022.2062531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The present study is targeted at investigating the effects of long intergenic non-protein coding RNA 847 (LINC00847) on the malignant biological behaviors of laryngeal squamous cell carcinoma (LSCC) cells, and the mechanisms. Quantitative real-time PCR and Western blotting were conducted for detecting the expressions of LINC00847, microRNA-181a-5p (miR-181a-5p) and zinc finger E-box binding homeobox 2 (ZEB2) in LSCC cell lines and tissue samples. BrdU, cell counting kit-8, scratch wound healing, Transwell and flow cytometry assays were utilized for detecting cell proliferation, migration, invasion, and cell cycle progression. Dual-luciferase reporter gene, RNA binding protein immunoprecipitation (RIP), and RNA pull-down assays were utilized to investigate the interaction among LINC00847, miR-181a-5p, and ZEB2. The subcellular location of LINC00847 was determined by RNA fluorescence in situ hybridization (RNA-FISH) assay. Tumor growth was evaluated using a xenograft model of nude mice. It was revealed that LINC00847 expression was increased in LSCC tissues, and its high expression was associated with lymph node metastasis and poor differentiation. LINC00847 was mainly located in the cytoplasm of LSCC cells, and LINC00847 overexpression promoted LSCC cell proliferation, migration, invasion, and accelerated the cell cycle progression while knocking down LINC00847 had the opposite effects in vitro and inhibited the tumor growth in vivo. LINC00847 directly targeted miR-181a-5p and negatively modulated miR-181a-5p expression. ZEB2 was a target gene of miR-181a-5p, and was positively and indirectly modulated by LINC00847. Our data suggest that LINC00847 promotes LSCC progression by regulating the miR-181a-5p/ZEB2 axis.
Collapse
Affiliation(s)
- Wei Li
- Department of Otolaryngology, Ezhou Central Hospital, Hubei, Ezhou Province, P.R. China
| | - Xionghui Hu
- Department of Otolaryngology, Tongxiang First People’s Hospital, Jiaxing, Zhejiang Province, P.R. China
| | - Xiaolin Huang
- Department of Otolaryngology, Ezhou Central Hospital, Hubei, Ezhou Province, P.R. China
| |
Collapse
|
5
|
Expression of LINC00847 in Peripheral Blood Mononuclear Cells of Children with Asthma and Its Prediction between Asthma Exacerbation and Remission. Genet Res (Camb) 2022; 2022:5678257. [PMID: 35356750 PMCID: PMC8958088 DOI: 10.1155/2022/5678257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. Asthma is defined as a heterogeneous disease that is usually characterized by chronic airway inflammation. Long noncoding RNAs play important roles in various biological processes including inflammation. To know more about the relationships between lncRNAs and asthma, we sought to the role of LINC00847 in peripheral blood mononuclear cells (PBMCs) of children with asthma exacerbation or asthma remission. Methods. Microarray analysis was performed on GSE143192 and GSE165934 datasets to screen differentially expressed lncRNAs (DElncRNAs) in human PBMCs between asthma patients and normal controls. LINC00847 was selected from DElncRNAs in human PBMCs between asthma patients and normal controls for further investigation. The expression levels of LINC00847 were quantified in PBMCs collected from 54 children with asthma exacerbation, 54 children with asthma remission, and 54 healthy children by real-time qPCR. The forced expiratory volume in the first second in percent predicted values (FEV1%), ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC), and peak expiratory flow rate (PEF%) were tested for evaluation of lung function. The concentration of immunoglobulin E (IgE) and eosinophil count was examined. The serum levels of interleukin-4 (IL-4), interferon-γ (IFN-γ), and IL-17A were determined by the ELISA method. Results. The expression level of LINC00847 in PBMCs of asthma exacerbation children was remarkably higher than that in PBMCs of asthma remission children and healthy children (
); the expression level of LINC00847 in PBMCs of asthma remission children was notably higher than that in PBMCs of healthy children (
). Pearson correlation analysis revealed that the expression levels of LINC00847 in PBMCs of asthma children were negatively correlated with FEV1% (r = −0.489), FEV1/FVC (r = −0.436), PEF% (r = −0.626), and IFN-γ level (r = −0.614) of asthma children, but positively correlated with IgE concentration (r = 0.680), eosinophil count (r = 0.780), IL-4 (r = 0.524), and IL-17A (r = 0.622) levels. When LINC00847 expression was used to distinguish asthma exacerbation from asthma remission, a 0.871 AUC (95% CI: 0.805–0.936) was yielded with sensitivity of 79.63% and specificity of 77.78%. Conclusion. The study demonstrates that increased LINC00847 expression may be associated with the development and progression of asthma, possibly serving as a novel biomarker for predicting asthma exacerbation from asthma remission.
Collapse
|
6
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
7
|
Tong C, Wang C, Wang Y, Xiao X. TNRC6C-AS1 Promotes Thyroid Cancer Progression by Upregulating LPAR5 via miR-513c-5p. Cancer Manag Res 2021; 13:6141-6155. [PMID: 34393509 PMCID: PMC8354737 DOI: 10.2147/cmar.s312621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Considering the combined role of long non-coding RNA (lncRNAs)-microRNA (miRNA)-mRNA in tumorigenesis, the purpose of this study was to investigate how TNRC6C-AS1 regulates the expression of lysophosphatidic acid receptor 5 (LPAR5) by modulating miR-513c-5p, thus influencing the progression of thyroid cancer (THCA). Methods qRT-PCR and Western blotting were performed to detect the expression levels of TNRC6C-AS1, miR-513c-5p, and LPAR5 in THCA tissues and cell lines. The viability, proliferation, migration, and invasion were assessed using CCK-8, BrdU, wound healing, and transwell migration assays, respectively. Dual-luciferase reporter assay, RIP assay, and RNA pull-down assay were used to evaluate the relationship between TNRC6C-AS1, miR-513c-5p, and LPAR5. Results TNRC6C-AS1 was highly expressed in THCA tissues, and knockout of TNRC6C-AS1 reduced the viability, proliferation, migration, and invasion of THCA cells. TNRC6C-AS1 competitively adsorbed miR-513c-5p. In addition, the biological function of TNRC6C-AS1 was blocked by knocking down the thyroid cell line TNRC6C-AS1 with miR-513c-5p inhibitor transfection. LPAR5 is the target gene for miR-513c-5p, which has the ability to eliminate the influence of miR-513c-5p on THCA cells. Conclusion The TNRC6C-AS1/miR-513c-5p/LPAR5 axis is a novel signaling pathway that modulates THCA progression and may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Chuanming Tong
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei, 430040, People's Republic of China
| | - Chuan Wang
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei, 430040, People's Republic of China
| | - Yajie Wang
- Department of General Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei, 430040, People's Republic of China
| | - Xiongsheng Xiao
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People's Republic of China
| |
Collapse
|
8
|
Arman T, Clarke JD. Microcystin Toxicokinetics, Molecular Toxicology, and Pathophysiology in Preclinical Rodent Models and Humans. Toxins (Basel) 2021; 13:toxins13080537. [PMID: 34437407 PMCID: PMC8402503 DOI: 10.3390/toxins13080537] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Microcystins are ubiquitous toxins produced by photoautotrophic cyanobacteria. Human exposures to microcystins occur through the consumption of contaminated drinking water, fish and shellfish, vegetables, and algal dietary supplements and through recreational activities. Microcystin-leucine-arginine (MCLR) is the prototypical microcystin because it is reported to be the most common and toxic variant and is the only microcystin with an established tolerable daily intake of 0.04 µg/kg. Microcystin toxicokinetics is characterized by low intestinal absorption, rapid and specific distribution to the liver, moderate metabolism to glutathione and cysteinyl conjugates, and low urinary and fecal excretion. Molecular toxicology involves covalent binding to and inhibition of protein phosphatases, oxidative stress, cell death (autophagy, apoptosis, necrosis), and cytoskeleton disruption. These molecular and cellular effects are interconnected and are commonly observed together. The main target organs for microcystin toxicity are the intestine, liver, and kidney. Preclinical data indicate microcystins may also have nervous, pulmonary, cardiac, and reproductive system toxicities. Recent evidence suggests that exposure to other hepatotoxic insults could potentiate microcystin toxicity and increase the risk for chronic diseases. This review summarizes the current knowledge for microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. More research is needed to better understand human toxicokinetics and how multifactorial exposures contribute to disease pathogenesis and progression.
Collapse
|
9
|
Guo J, Wei J, Huang F, Massey IY, Luo J, Yang F. Optimization of microcystin biodegradation by bacterial community YFMCD4 using response surface method. CHEMOSPHERE 2021; 274:129897. [PMID: 33979923 DOI: 10.1016/j.chemosphere.2021.129897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/25/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The increasing production of microcystin-LR (MC-LR) causing animal and human health issues is found in eutrophic water bodies, marine habitats and desert environments. The health threat posed by MC-LR has led to the establishment of World Health Organization's water guideline value of 1 μg/mL. Combating this has increased the search for cost-effective approach to degrade MC-LR. The study aimed to optimize the MC-degrading environmental factors of bacterial community YFMCD4. Response surface methodology (RSM) was employed to evaluate the influence of varying temperatures, pH and initial MC-LR concentration on the biodegradation efficiency of MC-LR by bacterial community YFMCD4. The optimal MC-LR biodegradation environmental factors were found to be 30 °C, pH 7 and 2 μg/mL initial MC-LR. The biodegradation rate reached 100% after 10 h. YFMCD4 mainly consisted of genera Alacligenes, Sphingobacterium and Pseudomonas using High-throughput pyrosequencing technology. The mlrA gene encoding MlrA enzyme considered most important for MC-LR biodegradation was obtained from YFMCD4. Data demonstrated that the bacterial structure and biodegradation efficiency of YFMCD4 varied with the change of environmental factors including temperature, pH and MC-LR concentrations. RSM is considered a good method to examine the optimal biodegradation environmental conditions for MC-LR. To date, RSM and High-throughput pyrosequencing technology are employed to optimize the biodegradation conditions (30 °C, pH 7 and 2 μg/mL initial MC-LR) and analyze the structure of bacterial community for the first time.
Collapse
Affiliation(s)
- Jian Guo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| | - Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Feiyu Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Isaac Yaw Massey
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
10
|
Shi L, Du X, Liu H, Chen X, Ma Y, Wang R, Tian Z, Zhang S, Guo H, Zhang H. Update on the adverse effects of microcystins on the liver. ENVIRONMENTAL RESEARCH 2021; 195:110890. [PMID: 33617868 DOI: 10.1016/j.envres.2021.110890] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most common cyanobacteria toxins in eutrophic water, which have strong hepatotoxicity. In the past decade, epidemiological and toxicological studies on liver damage caused by MCs have proliferated, and new mechanisms of hepatotoxicity induced by MCs have also been discovered and confirmed. However, there has not been a comprehensive and systematic review of these new findings. Therefore, this paper summarizes the latest advances in studies on the hepatotoxicity of MCs to reveal the effects and mechanisms of hepatotoxicity induced by MCs. Current epidemiological studies have confirmed that symptoms or signs of liver damage appear after human exposure to MCs, and a long time of exposure can even lead to liver cancer. Toxicological studies have shown that MCs can affect the expression of oncogenes by activating cell proliferation pathways such as MAPK and Akt, thereby promoting the occurrence and development of cancer. The latest evidence shows that epigenetic modifications may play an important role in MCs-induced liver cancer. MCs can cause damage to the liver by inducing hepatocyte death, mainly manifested as apoptosis and necrosis. The imbalance of liver metabolic homeostasis may be involved in hepatotoxicity induced by MCs. In addition, the combined toxicity of MCs and other toxins are also discussed in this article. This detailed information will be a valuable reference for further exploring of MCs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|
12
|
Zheng S, Wen C, Yang S, Yang Y, Yang F. Circular RNA expression profiles following MC-LR treatment in human normal liver cell line (HL7702) cells using high-throughput sequencing analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1103-1112. [PMID: 31825292 DOI: 10.1080/15287394.2019.1698120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR), a frequently occurring hepatotoxic cyanotoxin produced by cyanobacterial blooms, poses a great threat to human health. However, the precise molecular mechanisms underlying MC-LR-induced hepatotoxicity remain to be determined. Recent investigators found that in many human diseases circular RNAs (circRNAs) a class of endogenous non-coding RNAs played critical roles in disease outcomes. The aim of this study was to investigate whether circRNAs were involved in MC-LR-mediated hepatotoxicity using human normal liver cell line (HL7702). Using high-throughput sequencing analysis data demonstrated that expression levels of 3250, 3111, 3097, 3253 circRNAs were significantly altered at concentrations ranging from 1 to 10 µM MC-LR. Expression levels of hsa_circRNA_0000657 and hsa_circRNA_0000659 were down-regulated while hsa_circRNA_0003247 and hsa_circRNA_0001535 were up-regulated in all MC-LR-exposed groups. The high-throughput sequencing results of selected circRNAs differential expression genes (DEGs) levels were verified by real-time fluorescent quantitative PCR (qRT-PCR). Gene Ontology (GO) enrichment analysis showed that the functions of circRNAs significantly altered in HL7702 cells were predominantly associated with metabolism, systems development, and protein binding. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis data revealed that the target genes of differentially expressed circRNAs in HL7702 cells were involved in FoxO signaling pathway, protein processing in endoplasmic reticulum, Ras signaling pathway, cell cycle, PI3K-Akt signaling pathway, MAPK signaling pathway and pathways in cancer. In summary, evidence indicates that a correlation may exist between circRNAs and MC-LR-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shuilin Zheng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Cong Wen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shu Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yue Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, China
| |
Collapse
|
13
|
Wen C, Zheng S, Yang Y, Li X, Chen J, Wang X, Feng X, Yang F. Effects of microcystins-LR on genotoxic responses in human intestinal epithelial cells (NCM460). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1113-1119. [PMID: 31818208 DOI: 10.1080/15287394.2019.1698498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR), a cyclic heptapeptide toxin produced by cyanobacteria, was found to induce genotoxic actions in various types of cells. Some investigators reported that microcystin-LR acted as tumor initiator in the observed genotoxic action mediated by this cyanotoxin. However, the underlying mechanisms underlying MC-induced DNA damage in the human intestine epithelium cell line (NCM460) are not known. The purpose of this study was to examine the influence of 24 hr exposure to 5 or 10 µM MC-LR on intestinal DNA damage using NCM460 intestine cell line as a model. Data showed that MC-LR increased Olive tail moment (OTM) as evidenced by the comet assay, inhibited protein phosphatase 2A (PP2A) activity, elevated reactive oxygen species levels (ROS) and enhanced γ-H2AX and p-p53 protein expression levels. Results indicated that MC-LR produced intestinal DNA damage by inhibiting PP2A activity, activating p53 protein and subsequently initiating excess generation of ROS. These observations suggest that MC-LR-induced intestinal DNA damage involves a complex series of events that include oxidant stress, PP2A enzymic inhibition and activation of p53 protein.
Collapse
Affiliation(s)
- Cong Wen
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuilin Zheng
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yue Yang
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyu Li
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangling Feng
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental, Xiangya School of Public Health, Central South University, Changsha, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, China
| |
Collapse
|
14
|
Yang Y, Wen C, Zheng S, Liu W, Chen J, Feng X, Wang X, Yang F, Ding Z. Influence of microcystins-LR (MC-LR) on autophagy in human neuroblastoma SK-N-SH cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1129-1136. [PMID: 31818223 DOI: 10.1080/15287394.2019.1699732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) variant exposure poses a potential health hazard to ecosystem, animals, and humans. Previously investigators showed that autophagy plays a key role in MC-LR induced cytotoxicity immortalized murine ovarian granular KK-1 cells and rat Sertoli cells. Recently exposure to MC-LR via drinking water was reported to accumulate in mouse brain with associated adverse oxidant and inflammatory responses. However, autophagy the physiological mechanism required for cells to degrade their own impaired organelles to maintain their homeostasis has not been determined with respect to MC-LR actions on the central nervous system (CNS). Thus, the aim of this study was to examine the effects of MC-LR on autophagy using human neuroblastoma SK-N-SH cells as CNS model. Data demonstrated that after treatment with 15 or 30 µmol/L MC-LR for 48 hr significantly reduced survival rate was noted in SK-N-SH cells. MC-LR increased the expression levels of autophagy-related proteins light chain 3 (LC3) II/I and p62 in SK-N-SH cells, resulting in the accumulation of LC3 and increased intracellular free calcium ion levels. Data indicated that MC-LR induced adverse effects on the CNS as evidenced by decreased cellular survival associated with inhibition of autophagy flux and consequent enhanced autophagosomes accumulation.
Collapse
Affiliation(s)
- Yue Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Cong Wen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuilin Zheng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wenya Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, China
| | - Zhen Ding
- Public Health Research Institute of Jiangsu Province, Jiangsu Center for Disease Control and Prevention, Jiangsu, China
| |
Collapse
|
15
|
Zhang M, Zhang YQ, Wei XZ, Lee C, Huo DS, Wang H, Zhao ZY. Differentially expressed long-chain noncoding RNAs in human neuroblastoma cell line (SH-SY5Y): Alzheimer's disease cell model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1052-1060. [PMID: 31722651 DOI: 10.1080/15287394.2019.1687183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A number of complex human diseases including neurological diseases is characterized by dysregulation of long-chain noncoding RNA (lncRNA). The pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder is believed to involve alterations in lncRNAs. However, the specific lncRNAs modified in AD remain to be determined. The aim of this study was to identify lncRNAs associated with AD using human neuroblastoma cell line (SH-SY5Y) treated with beta-amyloid (Aβ) as a model of this disease. The differential expressions of lncRNA were compared between beta-amyloid (Aβ) SH-SY5Y cells and normal SH-SY5Y cells utilizing Illumina X10 gene sequencing. The differential expression profiles of amyloid (Aβ)-treated SH-SY5Y cells were determined and verified by qRT-PCR method. The expression levels of lncRNA were expressed by calculating the abundance of FPKM (measure gene expression). The differential expression of log2 (multiple change) >1 or log2 (multiple change) < -1 had statistical significance (P< .05). The differential expression profiles of amyloid (Aβ)-treated SH-SY5Y cells showed 40 lncRNA were up-regulated, while 60 lncRNA were down-regulated. GO and KEGG analysis demonstrated that differentially expressed genes were predominantly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, p53 signaling pathway, hepatitis B, cell cycle, post-translational protein modification, and regulation. In conclusion, approximately 100 dysregulated lncRNA transcripts were found in amyloid (Aβ)-treated SH-SY5Y cells and these lncRNAs may play an important role in the occurrence and development of AD through altered signal pathways.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Anesthesia, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Yuan-Qing Zhang
- Institute of Anesthesia, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Xie-Ze Wei
- Institute of Anesthesia, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Charles Lee
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Dong-Sheng Huo
- Institute of Anesthesia, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Zhi-Ying Zhao
- Institute of Anesthesia, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| |
Collapse
|
16
|
Nie J, Wu J, Chen Z, Jiao Y, Zhang J, Tian H, Li J, Tong J. Expression profiles of long non-coding RNA in mouse lung tissue exposed to radon. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:854-861. [PMID: 31496446 DOI: 10.1080/15287394.2019.1664011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNA) exert biological functions by interacting with RNAs, proteins, and DNA. Although lung damage associated with radon exposure was attributed to disturbances in microRNA and protein expression, the influence of radon on lncRNA is at present not known. The aim of this study was to (1) examine the effect of radon on lncRNA-mediated expression of transcription factors in mRNA in mouse lung tissue and (2) determine potential function and targets. Female BALB/c mice were divided into two groups: control and radon exposure to approximately 100,000 Bq/m3 (equivalent up to 60 working level month, WLM).RNA was extracted from lung tissue and used for high through-put lncRNA microarray analysis. A total of 1256 lncRNA transcripts were differentially expressed between the two groups of mice. Among these, the top 200 lncRNA-mRNA sets, with fold change of >2 and p-value <.05, were selected for KEGG analysis. Functional analysis via bioinformatics prediction in this study also suggested involvement of ErbB and Notch pathways in radon-induced mouse pulmonary injury. The results from immunohistochemical and Western blot analysis indicated that EbB2 and k-Ras protein expressions were significantly increased. In conclusion, approximately 1,000 dysregulated lncRNA transcripts were found in radon-exposed mice and these lncRNA may play an important role in lung damage following radon exposure. The observations in this study also suggested that ErbB2 and Notch pathways are activated and may be involved in radon-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Jihua Nie
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University , Suzhou , China
| | - Jing Wu
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Zhihai Chen
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Yang Jiao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University , Suzhou , China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Jianxiang Li
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University , Suzhou , China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Genetic Diseases , Suzhou , China
| |
Collapse
|
17
|
Cao L, Massey IY, Feng H, Yang F. A Review of Cardiovascular Toxicity of Microcystins. Toxins (Basel) 2019; 11:toxins11090507. [PMID: 31480273 PMCID: PMC6783932 DOI: 10.3390/toxins11090507] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mortality rate of cardiovascular diseases (CVD) in China is on the rise. The increasing burden of CVD in China has become a major public health problem. Cyanobacterial blooms have been recently considered a global environmental concern. Microcystins (MCs) are the secondary products of cyanobacteria metabolism and the most harmful cyanotoxin found in water bodies. Recent studies provide strong evidence of positive associations between MC exposure and cardiotoxicity, representing a threat to human cardiovascular health. This review focuses on the effects of MCs on the cardiovascular system and provides some evidence that CVD could be induced by MCs. We summarized the current knowledge of the cardiovascular toxicity of MCs, with regard to direct cardiovascular toxicity and indirect cardiovascular toxicity. Toxicity of MCs is mainly governed by the increasing level of reactive oxygen species (ROS), oxidative stress in mitochondria and endoplasmic reticulum, the inhibition activities of serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) and the destruction of cytoskeletons, which finally induce the occurrence of CVD. To protect human health from the threat of MCs, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
18
|
Zhang C, Massey IY, Liu Y, Huang F, Gao R, Ding M, Xiang L, He C, Wei J, Li Y, Ge Y, Yang F. Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:845-853. [PMID: 31462174 DOI: 10.1080/15287394.2019.1660466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Harmful Microcystis aeruginosa blooms occurred frequently in many eutrophic lakes and rivers with resultant serious global environmental consequences. Algicidal bacteria may play an important role in inhibiting the growth of Microcystis aeruginosa and are considered as an effective method for preventing the appearance of blooms. In order to counteract the harmful effects of Microcystis aeruginosa, a critical step is to identify, isolate and characterize indigenous algicidal bacteria. This study aimed to isolate a novel indigenous algicidal bacterium identified as Chryseobacterium species based upon its 16S rDNA sequence analysis, and determine whether this bacterium was effective in lysing Microcystis aeruginosa FACHB 905. The influence of environmental factors including temperature, pH, quantity of Chryseobacterium species as well as Microcystis aeruginosa concentration were examined with respect to algae-lysing properties of this bacterial strain. Data demonstrated that the highest algae-lysing activity of 80% against Microcystis aeruginosa FACHB 905 occurred within 72 hr. In addition, the algae-lysing activities of Chryseobacterium species cells were significantly higher than those of cell-free supernatant. In conclusion, data showed the algicidal bacterium Chryseobacterium species exhibited potent Microcystis aeruginosa-lysing activities and attacked Microcystis aeruginosa directly suggesting this algicidal bacterium may be potentially useful for reducing the number of harmful Microcystis aeruginosa blooms.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Yan Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Feiyu Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Ruihuan Gao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Ming Ding
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Lin Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Chuning He
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Jia Wei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University , Nanjing , JS , China
| | - Yuliang Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University , Nanjing , JS , China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University , Changsha , HN , China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University , Nanjing , JS , China
| |
Collapse
|
19
|
Effects of Microcystin-LR on the Microstructure and Inflammation-Related Factors of Jejunum in Mice. Toxins (Basel) 2019; 11:toxins11090482. [PMID: 31438657 PMCID: PMC6783826 DOI: 10.3390/toxins11090482] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing cyanobacterial blooms have recently been considered a severe environmental problem. Microcystin-leucine arginine (MC-LR) is one of the secondary products of cyanobacteria metabolism and most harmful cyanotoxins found in water bodies. Studies show MC-LR negatively affects various human organs when exposed to it. The phenotype of the jejunal chronic toxicity induced by MC-LR has not been well described. The aim of this paper was to investigate the effects of MC-LR on the jejunal microstructure and expression level of inflammatory-related factors in jejunum. Mice were treated with different doses (1, 30, 60, 90 and 120 μg/L) of MC-LR for six months. The microstructure and mRNA expression levels of inflammation-related factors in jejunum were analyzed. Results showed that the microstructure of the jejunum was destroyed and expression levels of inflammation-related factors interleukin (IL)-1β, interleukin (IL)-8, tumor necrosis factor alpha, transforming growth factor-β1 and interleukin (IL)-10 were altered at different MC-LR concentrations. To the best of our knowledge, this is the first study that mice were exposed to a high dose of MC-LR for six months. Our data demonstrated MC-LR had the potential to cause intestinal toxicity by destroying the microstructure of the jejunum and inducing an inflammatory response in mice, which provided new insight into understanding the prevention and diagnosis of the intestinal diseases caused by MC-LR.
Collapse
|
20
|
Chen J, Li Y, Liu F, Hou DX, Xu J, Zhao X, Yang F, Feng X. Prodigiosin Promotes Nrf2 Activation to Inhibit Oxidative Stress Induced by Microcystin-LR in HepG2 Cells. Toxins (Basel) 2019; 11:toxins11070403. [PMID: 31336817 PMCID: PMC6669629 DOI: 10.3390/toxins11070403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Microcystin-LR (MC-LR), a cyanotoxin produced by cyanobacteria, induces oxidative stress in various types of cells. Prodigiosin, a red linear tripyrrole pigment, has been recently reported to have antimicrobial, antioxidative, and anticancer properties. How prodigiosin reacts to reactive oxygen species (ROS) induced by MC-LR is still undetermined. This study aimed to examine the effect of prodigiosin against oxidative stress induced by MC-LR in HepG2 cells. Ros was generated after cells were treated with MC-LR and was significantly inhibited with treatment of prodigiosin. In prodigiosin-treated cells, the levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-related phase II enzyme heme oxygenase-1 (HO-1) were increased. Besides, prodigiosin contributed to enhance nuclear Nrf2 level and repressed ubiquitination. Furthermore, prodigiosin promoted Nrf2 protein level and inhibited ROS in Nrf2 knocked down HepG2 cells. Results indicated that prodigiosin reduced ROS induced by MC-LR by enhancing Nrf2 translocation into the nucleus in HepG2 cells. The finding presents new clues for the potential clinical applications of prodigiosin for inhibiting MC-LR-induced oxidative injury in the future.
Collapse
Affiliation(s)
- Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410128, Hunan, China
| | - Yuji Li
- Xiangya School of Public Health, Central South University, Changsha 410128, Hunan, China
| | - Fuqiang Liu
- Department of Public Health Emergency Treatment, Hunan Center for Disease Control and Prevention (CDC), Changsha 410005, Hunan, China
| | - De-Xing Hou
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Jingjing Xu
- Xiangya School of Public Health, Central South University, Changsha 410128, Hunan, China
| | - Xinying Zhao
- Xiangya School of Public Health, Central South University, Changsha 410128, Hunan, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, Hunan, China.
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410128, Hunan, China.
| |
Collapse
|