1
|
Shen J, Zhao W, Cheng J, Cheng J, Zhao L, Dai C, Fu Y, Li B, Chen Z, Shi D, Li H, Deng Y. Lipopolysaccharide accelerates tryptophan degradation in the ovary and the derivative kynurenine disturbs hormone biosynthesis and reproductive performance. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131988. [PMID: 37418963 DOI: 10.1016/j.jhazmat.2023.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, is a component of the outer membrane of gram-negative bacteria. LPS is released into the surrounding environment during bacterial death and lysis. Due to its chemical and thermal stability, LPS can be detected anywhere and easily exposed to humans and animals. Previous studies have shown that LPS causes hormonal imbalances, ovarian failure, and infertility in mammals. However, the potential mechanisms remain unclear. In this study, we investigated the effects and mechanisms of LPS on tryptophan degradation, both in vivo and in vitro. The effects of kynurenine, a tryptophan derivative, on granulosa cell function and reproductive performance were explored. Results showed that p38, NF-κB, and JNK signaling pathways were involved in LPS-induced Ido1 expressions and kynurenine accumulation. Furthermore, the kynurenine decreased estradiol production, but increased granulosa cell proliferation. In vivo, experiments showed that kynurenine decreased estradiol and FSH production and inhibited ovulation and corpus luteum formation. Additionally, pregnancy and offspring survival rates decreased considerably after kynurenine treatment. Our findings suggest that kynurenine accumulation disrupts hormone secretion, ovulation, corpus luteal formation, and reproductive performance in mammals.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinhua Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chaohui Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfeng Fu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bixia Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Sattar AA, Good CR, Saletes M, Brandão J, Jackson SK. Endotoxin as a Marker for Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16528. [PMID: 36554408 PMCID: PMC9778876 DOI: 10.3390/ijerph192416528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Water quality testing is vital to protect human health. Current testing relies mainly on culture-based detection of faecal indicator organisms such as Escherichia coli (E.coli). However, bacterial cultures are a slow process, taking 24-48 h and requiring specialised laboratories and trained personnel. Access to such laboratories is often sparse in developing countries and there are many fatalities deriving from poor water quality. Endotoxin is a molecular component of Gram-negative bacterial cell walls and can be used to detect their presence in drinking water. METHOD The current study used a novel assay (BacterisK) to rapidly detect endotoxin in various water samples and correlate the results with E. coli content measured by culture methods. The data generated by the BacterisK assay are presented as an 'endotoxin risk' (ER). RESULTS The ER values correlate with E. coli and thus endotoxin can be used as a marker of faecal contamination in water. Moreover, the BacterisK assay provides data in near real-time and can be used in situ allowing water quality testing at different spatial and temporal locations. CONCLUSION We suggest that BacterisK can be used as a convenient risk assessment tool to assess water quality where results are required quickly or access to laboratories is lacking.
Collapse
Affiliation(s)
- Anas A. Sattar
- Molendotech Limited, Brixham Laboratory, Blackball Lane, Freshwater Quarry, Brixham TQ5 8BA, UK
| | - Christian R. Good
- Molendotech Limited, Brixham Laboratory, Blackball Lane, Freshwater Quarry, Brixham TQ5 8BA, UK
| | - Margaux Saletes
- Molendotech Limited, Brixham Laboratory, Blackball Lane, Freshwater Quarry, Brixham TQ5 8BA, UK
| | - João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
- Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Simon K. Jackson
- Molendotech Limited, Brixham Laboratory, Blackball Lane, Freshwater Quarry, Brixham TQ5 8BA, UK
- School of Biomedical Science, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
3
|
Shin K, Lim G, Hong YS, Kim S, Hwang S, Lee J, Sin S, Cho A, Kim Y, Gautam R, Jo J, Acharya M, Maharjan A, Lee D, K C PB, Kim C, Heo Y, Kim HA. Exposure to lead on expression levels of brain immunoglobulins, inflammatory cytokines, and brain-derived neurotropic factor in fetal and postnatal mice with autism-like characteristics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:891-900. [PMID: 34187350 DOI: 10.1080/15287394.2021.1945985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders, and their incidence is increasing worldwide. Increased exposure to environmental metal lead (Pb) has been proposed as a risk factor associated with ASD. In the present study, BTBR T+ tf/J (BTBR) mice with ASD-like behavioral characteristics and control FVB mice were exposed gestationally and/or neonatally to Pb, and compared with highly social FVB mice to investigate neuroimmunological abnormalities. IgG1 and IgG2a levels in fetal brains from BTBR dams exposed to Pb (BTBR-Pb) were significantly higher than those of BTBR-controls (BTBR-C). However, this change did not occur in FVB mice exposed to Pb. The IgG1:IgG2a ratio was higher in both fetal and postnatal brains of BTBR mice compared to FVB animals regardless of Pb exposure. The IL-4:IFN-γ ratio was elevated in BTBR-Pb relative to BTBR-C mice, but this ratio was not markedly affected following Pb exposure in FVB animals. These findings suggest the potential for a Pb-driven predominant TH2-like reactivity profile in brain microenvironment present in BTBR mice. Brain-derived neurotrophic factor was decreased in fetal and postnatal BTBR-Pb brains relative to BTBR-C brains but not in FVB-Pb relative to FVB-C mice. Taken together, data demonstrate that Pb exposure might contribute to developmental brain abnormalities associated with ASD, particularly in individuals with genetic susceptibility to ASD.
Collapse
Affiliation(s)
- KyeongMin Shin
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - GyeongDong Lim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - SoNam Kim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - SoRyeon Hwang
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - JaeHee Lee
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - SoJung Sin
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - AhRang Cho
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - YeonGyeong Kim
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - JiHun Jo
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Anju Maharjan
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Pramod B K C
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yong Heo
- Department Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, Gyeongsan, Republic of Korea
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Hyoung-Ah Kim
- Department of Preventive Medicine, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Inhibitory Effect of Catechin-Rich Açaí Seed Extract on LPS-Stimulated RAW 264.7 Cells and Carrageenan-Induced Paw Edema. Foods 2021; 10:foods10051014. [PMID: 34066479 PMCID: PMC8148186 DOI: 10.3390/foods10051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Açaí berry is a fruit from the tree commonly known as açaízeiro (Euterpe oleracea Mart.) originated from the Amazonian region and widely consumed in Brazil. There are several reports of the anti-inflammatory activity of its pulp and few data about the seed's potential in inflammation control. This work aimed to evaluate the effect of catechin-rich açaí extract on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and carrageenan-induced paw edema. The treatment with E. oleracea ethyl acetate extract (EO-ACET) was used in an in vitro model performed with macrophages stimulated by LPS, in which pro-inflammatory markers were evaluated, and in an in vivo model of acute inflammation, in which edema inhibition was evaluated. EO-ACET showed an absence of endotoxins, and did not display cytotoxic effects in RAW 264.7 cells. LPS-stimulated cells treated with EO-ACET displayed low levels of nitrite and interleukins (IL's), IL-1β, IL-6 and IL-12, when compared to untreated cells. EO-ACET treatment was able to inhibit carrageenan-induced paw edema at 500 and 1000 mg/kg, in which no acute inflammatory reaction or low mast cell counts were observed by histology at the site of inoculation of λ-carrageenan. These findings provide more evidence to support further studies with E. oleracea seeds for the treatment of inflammation.
Collapse
|