1
|
Yamaguchi M, Shimokawa N, Murata T. Extracellular regucalcin reveals anti-cancer activity by suppressing cell growth and metastatic activity by blocking EGF signaling pathway in human glioblastoma cells in vitro. Cell Signal 2025; 132:111844. [PMID: 40318797 DOI: 10.1016/j.cellsig.2025.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/14/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Glioblastoma is a malignant brain tumor, which is insistent and deadly tumor. It is vital to adjust outcomes for patients with brain tumors. There are no effective treatments for malignant glioblastoma. Glioblastoma is characterized by overexpression of epidermal growth factor (EGF) receptors in a ligand-independent manner. EGF receptor signaling stimulates tumorigenesis by increasing the proliferation and metastatic activity of glioblastoma cells. Regucalcin is a critical regulator of signaling in non-tumor and tumor cells. Interestingly, extracellular regucalcin is reported to inhibit cancer cell proliferation. Furthermore, the current study elucidates the inhibitory effects of extracellular regucalcin on human glioblastoma cells in vitro. Glioblastoma cells were cultured in DMEM-low glucose containing 10 % fetal bovine serum (FBS) with the addition of regucalcin (0.001-10 nM). The proliferation of glioblastoma cells increased in culture with EGF or FBS. This augmentation was blocked by the treatment with extracellular regucalcin (0.001-10 nM) by the independent mechanism of altering EGF receptor levels and cell death. The suppressive effects of regucalcin on cell growth were not attenuated by treatment with various intracellular signaling inhibitors, including genistein, a tyrosine kinase inhibitor, and MAPK inhibitor. Mechanistically, culture with regucalcin reduced the expression levels of PI3-kinase 100α, Akt, MAPK, phosphor-MAPK, and mTOR, which promote cell growth, and regucalcin, which is an inhibitor of cancer cell growth. In addition, treatment with regucalcin inhibited metastatic activity, including adhesion, invasion, and migration of glioblastoma cells. Thus, extracellular regucalcin inhibited the activity of human glioblastoma cells, suggesting a suppressive role in the cancer microenvironment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, HI 96813, USA.
| | - Noriaki Shimokawa
- Department of Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Tomiyasu Murata
- Laboratory of Molecular Biology, Faculty of Pharmacy, Meijo University, Yagotoyama 150, Tempaku, Nagoya 468-8503, Japan
| |
Collapse
|
2
|
Ahmady F, Sharma A, Achuthan AA, Kannourakis G, Luwor RB. The Role of TIM-3 in Glioblastoma Progression. Cells 2025; 14:346. [PMID: 40072074 PMCID: PMC11899008 DOI: 10.3390/cells14050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Several immunoregulatory or immune checkpoint receptors including T cell immunoglobulin and mucin domain 3 (TIM-3) have been implicated in glioblastoma progression. Rigorous investigation over the last decade has elucidated TIM-3 as a key player in inhibiting immune cell activation and several key associated molecules have been identified both upstream and downstream that mediate immune cell dysfunction mechanistically. However, despite several reviews being published on other immune checkpoint molecules such as PD-1 and CTLA-4 in the glioblastoma setting, no such extensive review exists that specifically focuses on the role of TIM-3 in glioblastoma progression and immunosuppression. Here, we critically summarize the current literature regarding TIM-3 expression as a prognostic marker for glioblastoma, its expression profile on immune cells in glioblastoma patients and the exploration of anti-TIM-3 agents in glioblastoma pre-clinical models for potential clinical application.
Collapse
Affiliation(s)
- Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127 Bonn, Germany;
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Adrian A. Achuthan
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3350, Australia;
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Rodney B. Luwor
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3350, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
3
|
Yamaguchi M, Yoshiike K, Kuroki K, Watanabe H, Watanabe M. The novel marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol exhibits anticancer activity by regulating multiple signaling pathways in human glioblastoma cells: Blocking EGF signaling. Chem Biol Interact 2025; 406:111345. [PMID: 39674444 DOI: 10.1016/j.cbi.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Glioblastoma is the most common adult malignant brain tumor. This tumor is aggressive and the most lethal. Trials to improve the outcome of patients with this tumor remain critical. There are no effective therapies for malignant glioma. Glioblastoma is characterized by ligand-independent overexpression of epidermal growth factor (EGF) receptors. EGF receptor signaling can promote tumorigenesis by increasing cell proliferation and tissue invasion and by inhibiting apoptosis of cancer cells. The marine factor 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) has been shown to block oxidative stress by scavenging free radicals in various cell types. This study investigates the effects of DHMBA on human glioblastoma cells in vitro. Glioblastoma cells were cultured in DMEM-low glucose containing 10 % fetal bovine serum (FBS) in the presence of DHMBA (0.1-250 μM). Culturing with DHMBA significantly suppressed cell proliferation in the presence of FBS or EGF. Mechanistically, DHMBA treatment significantly decreased the levels of PI3-kinase 100α, Akt, MAPK, phosphor-MAPK, and mTOR, which are promoters of cell growth, and increased the levels of tumor suppressors p53, p21, and Rb, leading to the reduction of cancer cell growth. DHMBA treatment significantly stimulated the death of glioblastoma cells by increasing the levels of caspase-3 and cleaved caspase-3. In addition, culture with DHMBA significantly inhibited metastatic activity, including adhesion and migration of cancer cells. Thus, DHMBA may have inhibitory effects on the activity of human glioblastoma cells in vitro. This study may provide a new strategy for the treatment of glioblastoma tumors.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, the University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI, 96813, USA.
| | - Kenji Yoshiike
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
| | - Katsuya Kuroki
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
| | - Hideaki Watanabe
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan
| | - Mitsugu Watanabe
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji, 192-0154, Tokyo, Japan; Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan; Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
4
|
Yamaguchi M. Extracellular Regucalcin: A Potent Suppressor in the Cancer Cell Microenvironment. Cancers (Basel) 2025; 17:240. [PMID: 39858022 PMCID: PMC11763602 DOI: 10.3390/cancers17020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The regucalcin gene is located on the X chromosome, comprising seven exons and six introns. This gene and protein are expressed in various tissues and cells and is predominantly expressed in human liver, kidney, and adrenal tissues. Regucalcin gene expression is enhanced via a mechanism mediated by several signaling molecules and transcription factors. Regucalcin plays a multifunctional role in cellular regulation in maintaining cell homeostasis. In addition, regucalcin has been implicated in several metabolic disorders and diseases. In particular, regucalcin plays a role as a novel suppressor in several types of cancer patients. Increased expression of regucalcin suppresses the growth of human cancer cells, suggesting its pivotal role in suppressing tumor development. The survival time of cancer patients is prolonged with increased expression of regucalcin in the tumor tissues. The adhesion, migration, invasion, and bone metastatic activity of cancer cells are blocked by the overexpression of regucalcin, promoting dormancy in cancer patients. Interestingly, regucalcin is also found in human serum, suggesting its character as a novel biomarker in various diseases. This extracellular regucalcin has been shown to suppress human cancer cells' growth and bone metastatic activity. Thus, extracellular regucalcin may play a vital role as a suppressor of human cancer activity. Alteration of the serum regucalcin levels in physiological and pathophysiological conditions may influence the activity of cancer cells in the microenvironment. This review will discuss the potential role of extracellular regucalcin in cancer cell activity as a critical suppressor in the cancer microenvironment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Zhang ZS, Gao ZX, He JJ, Ma C, Tao HT, Zhu FY, Cheng YN, Xie CQ, Li JQ, Liu ZZ, Hou LL, Sun H, Xie SQ, Fang D. Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression. Br J Cancer 2024; 131:1387-1398. [PMID: 39266624 PMCID: PMC11473956 DOI: 10.1038/s41416-024-02842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ. METHODS Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors. RESULTS TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma. CONCLUSION Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zi-Xuan Gao
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Can Ma
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| | - Dong Fang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Araujo-Abad S, Rizzuti B, Soto-Conde L, Vidal M, Abian O, Velazquez-Campoy A, Neira JL, de Juan Romero C. Citrullinating enzyme PADI4 and transcriptional repressor RING1B bind in cancer cells. Int J Biol Macromol 2024; 274:133163. [PMID: 38878927 DOI: 10.1016/j.ijbiomac.2024.133163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Polycomb groups (PcGs) are transcriptional repressors, formed by a complex of several proteins, involved in multicellular development and cancer epigenetics. One of these proteins is the E3 ubiquitin-protein ligase RING1 (or RING1B), associated with the regulation of transcriptional repression and responsible for monoubiquitylation of the histone H2A. On the other hand, PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline, and it is also involved in the development of glioblastoma, among other types of cancers. In this work, we showed the association of PADI4 and RING1B in the nucleus and cytosol in several cancer cell lines by using immunofluorescence and proximity ligation assays. Furthermore, we demonstrated that binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that RING1B could bind to the active site of PADI4, as confirmed by protein-protein docking simulations. In vitro and in silico findings showed that binding to PADI4 occurred for the isolated fragments corresponding to both the N-terminal (residues 1-221) and C-terminal (residues 228-336) regions of RING1B. Binding to PADI4 was also hampered by GSK484, as shown by isothermal titration calorimetry (ITC) experiments for the sole N-terminal region, and by both NMR and ITC for the C-terminal one. The dissociation constants between PADI4 and any of the two isolated RING1B fragments were in the low micromolar range (~2-10 μM), as measured by fluorescence and ITC. The interaction between RING1B and PADI4 might imply citrullination of the former, leading to several biological consequences, as well as being of potential therapeutic relevance for improving cancer treatment with the generation of new antigens.
Collapse
Affiliation(s)
- Salome Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, 170124 Quito, Ecuador; IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain.
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | | | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche (Alicante), Spain.
| |
Collapse
|
7
|
Thapa R, Afzal M, Goyal A, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Kukreti N, Ali H, Dureja H, Kumar P, Singh TG, Kuppusamy G, Singh SK, Dua K. Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: From mechanisms to therapeutics. Life Sci 2024; 345:122613. [PMID: 38582393 DOI: 10.1016/j.lfs.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, 7, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
8
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
9
|
Sevastre AS, Costachi A, Tataranu LG, Brandusa C, Artene SA, Stovicek O, Alexandru O, Danoiu S, Sfredel V, Dricu A. Glioblastoma pharmacotherapy: A multifaceted perspective of conventional and emerging treatments (Review). Exp Ther Med 2021; 22:1408. [PMID: 34676001 PMCID: PMC8524703 DOI: 10.3892/etm.2021.10844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Due to its localisation, rapid onset, high relapse rate and resistance to most currently available treatment methods, glioblastoma multiforme (GBM) is considered to be the deadliest type of all gliomas. Although surgical resection, chemotherapy and radiotherapy are among the therapeutic strategies used for the treatment of GBM, the survival rates achieved are not satisfactory, and there is an urgent need for novel effective therapeutic options. In addition to single-target therapy, multi-target therapies are currently under development. Furthermore, drugs are being optimised to improve their ability to cross the blood-brain barrier. In the present review, the main strategies applied for GBM treatment in terms of the most recent therapeutic agents and approaches that are currently under pre-clinical and clinical testing were discussed. In addition, the most recently reported experimental data following the testing of novel therapies, including stem cell therapy, immunotherapy, gene therapy, genomic correction and precision medicine, were reviewed, and their advantages and drawbacks were also summarised.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandra Costachi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, ‘Bagdasar-Arseni’ Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Corina Brandusa
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Stefan Alexandru Artene
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Olivian Stovicek
- Department of Pharmacology, Faculty of Nursing Targu Jiu, Titu Maiorescu University of Bucharest, 210106 Targu Jiu, Romania
| | - Oana Alexandru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Colella B, Colardo M, Iannone G, Contadini C, Saiz-Ladera C, Fuoco C, Barilà D, Velasco G, Segatto M, Di Bartolomeo S. mTOR Inhibition Leads to Src-Mediated EGFR Internalisation and Degradation in Glioma Cells. Cancers (Basel) 2020; 12:E2266. [PMID: 32823532 PMCID: PMC7464593 DOI: 10.3390/cancers12082266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration.
Collapse
Affiliation(s)
- Barbara Colella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Gianna Iannone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Claudia Contadini
- Department of Biology, University of RomeTor Vergata, 00133 Rome, Italy; (C.C.); (C.F.); (D.B.)
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a carattere Scientifico (IRCSS) Fondazione Santa Lucia, 00179 Rome, Italy
| | - Cristina Saiz-Ladera
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain; (C.S.-L.); (G.V.)
| | - Claudia Fuoco
- Department of Biology, University of RomeTor Vergata, 00133 Rome, Italy; (C.C.); (C.F.); (D.B.)
| | - Daniela Barilà
- Department of Biology, University of RomeTor Vergata, 00133 Rome, Italy; (C.C.); (C.F.); (D.B.)
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a carattere Scientifico (IRCSS) Fondazione Santa Lucia, 00179 Rome, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain; (C.S.-L.); (G.V.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche (IS), Italy; (B.C.); (M.C.); (G.I.); (M.S.)
| |
Collapse
|
11
|
Zottel A, Šamec N, Videtič Paska A, Jovčevska I. Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers (Basel) 2020; 12:1842. [PMID: 32650527 PMCID: PMC7409010 DOI: 10.3390/cancers12071842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most aggressive and lethal primary brain malignancy, with an average patient survival from diagnosis of 14 months. Glioblastoma also usually progresses as a more invasive phenotype after initial treatment. A major step forward in our understanding of the nature of glioblastoma was achieved with large-scale expression analysis. However, due to genomic complexity and heterogeneity, transcriptomics alone is not enough to define the glioblastoma "fingerprint", so epigenetic mechanisms are being examined, including the noncoding genome. On the basis of their tissue specificity, long noncoding RNAs (lncRNAs) are being explored as new diagnostic and therapeutic targets. In addition, growing evidence indicates that lncRNAs have various roles in resistance to glioblastoma therapies (e.g., MALAT1, H19) and in glioblastoma progression (e.g., CRNDE, HOTAIRM1, ASLNC22381, ASLNC20819). Investigations have also focused on the prognostic value of lncRNAs, as well as the definition of the molecular signatures of glioma, to provide more precise tumor classification. This review discusses the potential that lncRNAs hold for the development of novel diagnostic and, hopefully, therapeutic targets that can contribute to prolonged survival and improved quality of life for patients with glioblastoma.
Collapse
Affiliation(s)
| | | | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| |
Collapse
|
12
|
Jovčevska I. Next Generation Sequencing and Machine Learning Technologies Are Painting the Epigenetic Portrait of Glioblastoma. Front Oncol 2020; 10:798. [PMID: 32500035 PMCID: PMC7243123 DOI: 10.3389/fonc.2020.00798] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/23/2020] [Indexed: 12/31/2022] Open
Abstract
Even with a rare occurrence of only 1.35% of cancer cases in the United States of America, brain tumors are considered as one of the most lethal malignancies. The most aggressive and invasive type of brain tumor, glioblastoma, accounts for 60–70% of all gliomas and presents with life expectancy of only 12–18 months. Despite trimodal treatment and advances in diagnostic and therapeutic methods, there are no significant changes in patient outcome. Our understanding of glioblastoma was significantly improved with the introduction of next generation sequencing technologies. This led to the identification of different genetic and molecular subtypes, which greatly improve glioblastoma diagnosis. Still, because of the poor life expectancy, novel diagnostic, and treatment methods are broadly explored. Epigenetic modifications like methylation and changes in histone acetylation are such examples. Recently, in addition to genetic and molecular characteristics, epigenetic profiling of glioblastomas is also used for sample classification. Further advancement of next generation sequencing technologies is expected to identify in detail the epigenetic signature of glioblastoma that can open up new therapeutic opportunities for glioblastoma patients. This should be complemented with the use of computational power i.e., machine and deep learning algorithms for objective diagnostics and design of individualized therapies. Using a combination of phenotypic, genotypic, and epigenetic parameters in glioblastoma diagnostics will bring us closer to precision medicine where therapies will be tailored to suit the genetic profile and epigenetic signature of the tumor, which will grant longer life expectancy and better quality of life. Still, a number of obstacles including potential bias, availability of data for minorities in heterogeneous populations, data protection, and validation and independent testing of the learning algorithms have to be overcome on the way.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Abstract
The most aggressive brain malignancy, glioblastoma, accounts for 60-70% of all gliomas and is uniformly fatal. According to the molecular signature, glioblastoma is divided into four subtypes (proneural, neural, classical, and mesenchymal), each with its own genetic background. The Cancer Genome Atlas project provides information about the most common genetic changes in glioblastoma. They involve mutations in TP53, TERT, and PTEN, and amplifications in EFGR, PDGFRA, CDK4, CDK6, MDM2, and MDM4. Recently, epigenetics was used to demonstrate the oncogenic roles of miR-124, miR-137, and miR-128. The most important findings so far are mutations in IDH1/2 and MGMT promoter methylation, which are routinely used as predictive biomarkers in patient care. Current clinical treatment leaves patients with only a 10% chance for 5-year survival. Attempts to define the mutational profile of glioblastoma to identify clinically relevant changes have not yet yielded significant results. This can be attributed to inter- and intra-tumor heterogeneity that is present in most glioblastomas, as well as hypermutation that appears as a consequence of chemotherapy. The evolving field of radiogenomics aims to classify glioblastoma using a combination of magnetic resonance imaging and genomic information. In the era of genomic medicine, next-generation sequencing is extensively used in glioblastoma research because it can detect multiple changes in a single biological sample; its potential in detecting circulating cell-free DNA has been tested in cerebrospinal fluid and plasma, and it shows promise in the examination of the cellular content of extracellular vesicles as a potential source of biomarkers. Next-generation sequencing is making its way into glioblastoma diagnostics. Gene panels like GlioSeq, which includes the most commonly mutated genes, are currently being tested on snap frozen and formalin fixed paraffin embedded tissues. This new methodology is helping to define the "next generation of glioblastomas" - clinically defined and better understood, with greater potential to improve patient care. However, limitations of the necessary infrastructure, space for data storage, technical expertise, and data ownership need to be considered carefully.
Collapse
Affiliation(s)
- Ivana Jovčevska
- a Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|