1
|
Alipour M, Sharifi S, Samiei M, Shahi S, Aghazadeh M, Dizaj SM. Synthesis, characterization, and evaluation of Hesperetin nanocrystals for regenerative dentistry. Sci Rep 2023; 13:2076. [PMID: 36746996 PMCID: PMC9902453 DOI: 10.1038/s41598-023-28267-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Hesperetin (HS), a metabolite of hesperidin, is a polyphenolic component of citrus fruits. This ingredient has a potential role in bone strength and the osteogenic differentiation. The bone loss in the orofacial region may occur due to the inflammation response of host tissues. Nanotechnology applications have been harshly entered the field of regenerative medicine to improve the efficacy of the materials and substances. In the current study, the hesperetin nanocrystals were synthesized and characterized. Then, the anti-inflammatory and antioxidative effects of these nanocrystals were evaluated on inflamed human Dental Pulp Stem Cells (hDPSCs) and monocytes (U937). Moreover, the osteoinduction capacity of these nanocrystals was assessed by gene and protein expression levels of osteogenic specific markers including RUNX2, ALP, OCN, Col1a1, and BSP in hDPSCs. The deposition of calcium nodules in the presence of hesperetin and hesperetin nanocrystals was also assessed. The results revealed the successful fabrication of hesperetin nanocrystals with an average size of 100 nm. The levels of TNF, IL6, and reactive oxygen species (ROS) in inflamed hDPSCs and U937 significantly decreased in the presence of hesperetin nanocrystals. Furthermore, these nanocrystals induced osteogenic differentiation in hDPSCs. These results demonstrated the positive and effective role of fabricated nanocrystal forms of this natural ingredient for regenerative medicine purposes.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Daneshgah St, Golgasht St, Tabriz, Iran.
| |
Collapse
|
2
|
Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Rosales-Pérez KE, Orozco-Hernández JM, Islas-Flores H, Galar-Martínez M, Hernández-Navarro MD. Chronic exposure to realistic concentrations of metformin prompts a neurotoxic response in Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157888. [PMID: 35952892 DOI: 10.1016/j.scitotenv.2022.157888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Metformin (MET) is among the most consumed drugs around the world, and thus, it is considered the uppermost drug in mass discharged into water settings. Nonetheless, data about the deleterious consequences of MET on water organisms are still scarce and require further investigation. Herein, we aimed to establish whether or not chronic exposure to MET (1, 20, and 40 μg/L) may alter the swimming behavior and induce neurotoxicity in Danio rerio adults. After 4 months of exposure, MET-exposed fish exhibited less swimming activity when compared to control fish. Moreover, compared with the control group, MET significantly inhibited the activity of AChE and induced oxidative damage in the brain of fish. Concerning gene expression, MET significantly upregulated the expression of Nrf1, Nrf2, BAX, p53, BACE1, APP, PSEN1, and downregulated CASP3 and CASP9. Although MET did not overexpress the CASP3 gene, we saw a meaningful rise in the activity of this enzyme in the blood of fish exposed to MET compared to the control group, which we then confirmed by a high number of apoptotic cells in the TUNEL assay. Our findings demonstrate that chronic exposure to MET may impair fish swimming behavior, making them more vulnerable to predators.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
3
|
A novel multifaceted approach for infected wound healing: Optimization and in vivo evaluation of Phenethyl alcohol loaded nanoliposomes hydrogel. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Ghorbani M, Shahabi P, Karimi P, Soltani-Zangbar H, Morshedi M, Bani S, Jafarzadehgharehziaaddin M, Sadeghzadeh-Oskouei B, Ahmadalipour A. Impacts of epidural electrical stimulation on Wnt signaling, FAAH, and BDNF following thoracic spinal cord injury in rat. J Cell Physiol 2020; 235:9795-9805. [PMID: 32488870 DOI: 10.1002/jcp.29793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
Electrical stimulation (ES) has been shown to improve some of impairments after spinal cord injury (SCI), but the underlying mechanisms remain unclear. The Wnt signaling pathways and the endocannabinoid system appear to be modulated in response to SCI. This study aimed to investigate the effect of ES therapy on the activity of canonical/noncanonical Wnt signaling pathways, brain-derived neurotrophic factor (BDNF), and fatty-acid amide hydrolase (FAAH), which regulate endocannabinoids levels. Forty male Wistar rats were randomly divided into four groups: (a) Sham, (b) laminectomy + epidural subthreshold ES, (c) SCI, and (d) SCI + epidural subthreshold ES. A moderate contusion SCI was performed at the thoracic level (T10). Epidural subthreshold ES was delivered to upper the level of T10 segment every day (1 hr/rat) for 2 weeks. Then, animals were killed and immunoblotting was used to assess spinal cord parameters. Results revealed that ES intervention for 14 days could significantly increase wingless-type3 (Wnt3), Wnt7, β-catenin, Nestin, and cyclin D1 levels, as well as phosphorylation of glycogen synthase kinase 3β and Jun N-terminal kinase. Additionally, SCI reduced BDNF and FAAH levels, and ES increased BDNF and FAAH levels in the injury site. We propose that ES therapy may improve some of impairments after SCI through Wnt signaling pathways. Outcomes also suggest that BDNF and FAAH are important players in the beneficial impacts of ES therapy. However, the precise mechanism of BDNF, FAAH, and Wnt signaling pathways on SCI requires further investigation.
Collapse
Affiliation(s)
- Meysam Ghorbani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani-Zangbar
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Morshedi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Bani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Gao B, Zhou S, Sun C, Cheng D, Zhang Y, Li X, Zhang L, Zhao J, Xu D, Bai Y. Brain Endothelial Cell-Derived Exosomes Induce Neuroplasticity in Rats with Ischemia/Reperfusion Injury. ACS Chem Neurosci 2020; 11:2201-2213. [PMID: 32574032 DOI: 10.1021/acschemneuro.0c00089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Exosomes derived from the cerebral endothelial cells play essential roles in protecting neurons from hypoxia injury, but little is known regarding the biological effects and mechanisms of exosomes on brain plasticity. In this study, exosomes were isolated from rodent cerebral endothelial cells (bEnd.3 cells) by ultracentrifugation, either endothelial cell-derived exosomes (EC-Exo) or PBS was injected intraventricularly 2 h after the middle cerebral artery occlusion/reperfusion (MCAO/R) model surgery in the Exo group and control group, respectively. Sham group rats received the same surgical but not ischemic procedure. We evaluated the motor function of rats after MCAO/R, and the foot-fault rate of the Exo group was significantly lower than that of the control group within 23 days (p < 0.05); the Catwalk analysis also showed gait difference between two groups (p < 0.05). On day 28 after MCAO/R, we euthanized the rats, removed the motor cortex from the brain, and then sequenced the genes by using GO and KEGG to find transcriptome analysis of biological terms and functional annotations: The pathway enrichment revealed that the function of synaptic transmission, regulation of synaptic plasticity, and regulation of synaptic vesicle cycle was significantly enriched with the Exo group than control group. Furthermore, the upregulation of synapsin-I expression in the motor cortex (p < 0.05) as well as the increase of the length of the dendrites were found in the Exo group (p < 0.05) than the control group. We determined the content of exosome microRNA levels, and microRNA-126-3p was the highest (TPM) by transcriptome analysis. Moreover, the microRNA-126-3p protected PC12 cells from apoptosis and increased neurite outgrowth, illustrating the mechanism of how exosomes play a role in altering brain plasticity. This study demonstrated that EC-Exo promoted functional motor recovery in the MCAO/R model, exosomes were critical for the reconstruction of synaptic function in ischemic brain injury, and microRNA-126-3p from EC-Exo could serve as a treatment for nerve damage.
Collapse
Affiliation(s)
- Beiyao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| | - Shaoting Zhou
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, 170 Xinsong Rd, Minhang District, Shanghai, China 201100
| | - Chengcheng Sun
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital Affiliated to Tongji University, 389 Xincun Road, Putuo District, Shanghai, China 200065
| | - Dandan Cheng
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| | - Ye Zhang
- Rehabilitation Section, Department of Spine Surgery, Tongji Hospital Affiliated to Tongji University, 389 Xincun Road, Putuo District, Shanghai, China 200065
| | - Xutong Li
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, 170 Xinsong Rd, Minhang District, Shanghai, China 201100
| | - Li Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| | - Jing Zhao
- Department of Neurology, Minhang Hospital Affiliated to Fudan University, 170 Xinsong Rd, Minhang District, Shanghai, China 201100
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, 110 Ganhe Road,
Hongkou District, Shanghai, China 201203
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, China 201203
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, China 201203
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Jing’an District, Shanghai, China 200041
| |
Collapse
|
6
|
Poupon-Bejuit L, Rocha-Ferreira E, Thornton C, Hagberg H, Rahim AA. Neuroprotective Effects of Diabetes Drugs for the Treatment of Neonatal Hypoxia-Ischemia Encephalopathy. Front Cell Neurosci 2020; 14:112. [PMID: 32435185 PMCID: PMC7218053 DOI: 10.3389/fncel.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The perinatal period represents a time of great vulnerability for the developing brain. A variety of injuries can result in death or devastating injury causing profound neurocognitive deficits. Hypoxic-ischemic neonatal encephalopathy (HIE) remains the leading cause of brain injury in term infants during the perinatal period with limited options available to aid in recovery. It can result in long-term devastating consequences with neurologic complications varying from mild behavioral deficits to severe seizure, intellectual disability, and/or cerebral palsy in the newborn. Despite medical advances, the only viable option is therapeutic hypothermia which is classified as the gold standard but is not used, or may not be as effective in preterm cases, infection-associated cases or low resource settings. Therefore, alternatives or adjunct therapies are urgently needed. Ongoing research continues to advance our understanding of the mechanisms contributing to perinatal brain injury and identify new targets and treatments. Drugs used for the treatment of patients with type 2 diabetes mellitus (T2DM) have demonstrated neuroprotective properties and therapeutic efficacy from neurological sequelae following HIE insults in preclinical models, both alone, or in combination with induced hypothermia. In this short review, we have focused on recent findings on the use of diabetes drugs that provide a neuroprotective effect using in vitro and in vivo models of HIE that could be considered for clinical translation as a promising treatment.
Collapse
Affiliation(s)
| | - Eridan Rocha-Ferreira
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
7
|
Yang D, Wu W, Gan G, Wang D, Gong J, Fang K, Lu F. (-)-Syringaresinol-4-O-β-D-glucopyranoside from Cortex Albizziae inhibits corticosterone-induced PC12 cell apoptosis and relieves the associated dysfunction. Food Chem Toxicol 2020; 141:111394. [PMID: 32360906 DOI: 10.1016/j.fct.2020.111394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
The neuroprotective effects and potential mechanisms of (-)-Syringaresinol-4-O-β-D-glucopyranoside (SRG), a natural lignan glycoside extracted from Cortex Albizziae, were investigated using corticosterone (CORT)-induced PC12 cells as an in vitro anxiety model. PC12 cells were treated with 100 μM CORT and 5, 10, or 20 μM SRG for 48 h. Cell viability and lactate dehydrogenase (LDH) leakage were measured. Apoptosis were detected using FITC-coupled Annexin V (AV) and propidium iodide (PI) staining flow cytometric analyses and TUNEL assays. Rhodamine 123 and Fluo-3-AM staining flow cytometric analyses were used to detect mitochondrial membrane potential (ΔΨm) and intracellular calcium concentration ([Ca2+]i), respectively. Western blot was used to detect brain-derived neurotrophic factor (BDNF), Bax, Bcl-2, cAMP-response element binding protein (CREB), cytosolic cytochrome c (Cyt c), caspase-3, and cleaved caspase-3. Experimental data showed that SRG promoted cell proliferation, reduced LDH release, inhibited apoptosis, improved ΔΨm values, decreased [Ca2+]i, up-regulated CREB, BDNF, and Bcl-2, down-regulated Bax and Cyt c protein expression levels, and reduced caspase-3 activity. This suggests that SRG has neuroprotective and antiapoptotic effects in the pathogenesis of anxiety disorders, and its mechanisms are partly connecte to inhibition of the mitochondrial apoptotic pathway and activation of pathways involving CREB and BDNF.
Collapse
Affiliation(s)
- Desen Yang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China; College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China.
| | - Wanqin Wu
- Hubei Provincial Institute for Food Supervision and Test, 1 Gaoxin Road, Jiangxia District, Wuhan, 430070, Hubei Province, China; Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, 1 Gaoxin Road, Jiangxia District, Wuhan, 430070, Hubei Province, China.
| | - Guoping Gan
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China; Chinese Materia Medica Processing Engineering Center of Hubei Province, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, Wuhan, 430065, Hubei Province, China.
| | - Dingkun Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Jing Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Ke Fang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1037 Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
8
|
Shu K, Zhang Y. Protodioscin protects PC12 cells against oxygen and glucose deprivation-induced injury through miR-124/AKT/Nrf2 pathway. Cell Stress Chaperones 2019; 24:1091-1099. [PMID: 31446555 PMCID: PMC6882996 DOI: 10.1007/s12192-019-01031-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
The purpose of the current study was to demonstrate the neuroprotective effect of protodioscin (Prot) in an in vitro model of ischemia/reperfusion (I/R) and investigate the underlying molecular mechanism. After PC12 cells were exposed to oxygen and glucose deprivation (OGD) reperfusion, PI staining by flow cytometry was used to quantify the rate of apoptosis. The levels of hypoxia-inducible factor 1-alpha (HIF-1α), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were determined using commercially available kits. Intracellular reactive oxygen species (ROS) level was detected using the 20,70-dichlorodihy-drofluorescein diacetate (DCFH-DA) fluorescence assay. The expression levels of heat-shock proteins (HSP), PI3K, AKT, Nrf2, and miR-124 were tested by western blot or quantitative PCR. Prot significantly attenuated oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptotic death. Prot also reduced the oxidative stress as revealed by increasing the activities of SOD and GSH-Px, decreasing the levels of ROS and MDA. Moreover, mechanism investigations suggested that Prot prevented the decrease of HSP70, HSP32 (hemeoxygenase-1, HO-1), and PI3K protein expression, phosphorylation of AKT, and the accumulation of nuclear Nrf2. The level of miR-124 was decreased in PC12 cells, which was also effectively reversed by Prot treatment. Prot protected PC12 cells against OGD/R-induced injury through inhibiting oxidative stress and apoptosis, which could be associated with increasing HSP proteins expression via activating PI3K/AKT/Nrf2 pathway and miR-124 modulation.
Collapse
Affiliation(s)
- Kun Shu
- Department of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yuelin Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Xi'an Jiaotong University, 277, Yanta Road., Xi'an City, 710061, Shanxi Province, China.
| |
Collapse
|
9
|
Yang Z, Gao X, Zhou M, Kuang Y, Xiang M, Li J, Song J. Effect of metformin on human periodontal ligament stem cells cultured with polydopamine‐templated hydroxyapatite. Eur J Oral Sci 2019; 127:210-221. [DOI: 10.1111/eos.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Zun Yang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Xiang Gao
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Mengjiao Zhou
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Yunchun Kuang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Mingli Xiang
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jie Li
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| | - Jinlin Song
- College of Stomatology Chongqing Medical University Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
| |
Collapse
|
10
|
Wu H, Ding J, Li S, Lin J, Jiang R, Lin C, Dai L, Xie C, Lin D, Xu H, Gao W, Zhou K. Metformin Promotes the Survival of Random-Pattern Skin Flaps by Inducing Autophagy via the AMPK-mTOR-TFEB signaling pathway. Int J Biol Sci 2019; 15:325-340. [PMID: 30745824 PMCID: PMC6367544 DOI: 10.7150/ijbs.29009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Random-pattern skin flaps are widely used to close defects in reconstructive and plastic surgeries; however, they are vulnerable to necrosis, particularly in the distal portion of the flap. Here, we examined the effects of metformin on flap survival and the mechanisms underlying these effects. Following metformin treatment, the survival area, blood flow, and number of microvessels present in skin flaps were increased on postoperative day 7, whereas tissue edema was reduced. In addition, metformin promoted angiogenesis, inhibited apoptosis, relieved oxidative stress, and increased autophagy in areas of ischemia; these effects were reversed by autophagy inhibitors 3-methyladenine (3MA) or chloroquine (CQ). Either 3MA or CQ reversed the metformin-induced increase in flap viability. Moreover, metformin also activated the AMPK-mTOR-TFEB signaling pathway in ischemic areas. Inhibitions of AMPK via Compound C (CC) or AMPK shRNA adeno-associated virus (AAV) vector resulted in the downregulation of the AMPK-mTOR-TFEB signaling pathway and autophagy level in metformin-treated flaps. Taken together, our findings suggest that metformin improves the survival of random-pattern skin flaps by enhancing angiogenesis and suppressing apoptosis and oxidative stress. These effects result from increased autophagy mediated by activation of the AMPK-mTOR-TFEB signaling pathway.
Collapse
Affiliation(s)
- Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Shihen Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinti Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Renhao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Li Dai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenglong Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Dingsheng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|