1
|
Gutiérrez-Rodelo C, Martínez-Tolibia SE, Morales-Figueroa GE, Velázquez-Moyado JA, Olivares-Reyes JA, Navarrete-Castro A. Modulating cyclic nucleotides pathways by bioactive compounds in combatting anxiety and depression disorders. Mol Biol Rep 2023; 50:7797-7814. [PMID: 37486442 PMCID: PMC10460744 DOI: 10.1007/s11033-023-08650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Anxiety and depression disorders are highly prevalent neurological disorders (NDs) that impact up to one in three individuals during their lifetime. Addressing these disorders requires reducing their frequency and impact, understanding molecular causes, implementing prevention strategies, and improving treatments. Cyclic nucleotide monophosphates (cNMPs) like cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), cyclic uridine monophosphate (cUMP), and cyclic cytidine monophosphate (cCMP) regulate the transcription of genes involved in neurotransmitters and neurological functions. Evidence suggests that cNMP pathways, including cAMP/cGMP, cAMP response element binding protein (CREB), and Protein kinase A (PKA), play a role in the physiopathology of anxiety and depression disorders. Plant and mushroom-based compounds have been used in traditional and modern medicine due to their beneficial properties. Bioactive compound metabolism can activate key pathways and yield pharmacological outcomes. This review focuses on the molecular mechanisms of bioactive compounds from plants and mushrooms in modulating cNMP pathways. Understanding these processes will support current treatments and aid in the development of novel approaches to reduce the prevalence of anxiety and depression disorders, contributing to improved outcomes and the prevention of associated complications.
Collapse
Affiliation(s)
- Citlaly Gutiérrez-Rodelo
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| | | | - Guadalupe Elide Morales-Figueroa
- Department of Physiology, Biophysics, and Neurosciences of the Center for Research, Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, ZIP, 07360, Mexico
| | - Josué Arturo Velázquez-Moyado
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico
| | - J Alberto Olivares-Reyes
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Mexico City, Mexico City, ZIP 07360, Mexico
| | - Andrés Navarrete-Castro
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| |
Collapse
|
2
|
El-Moslemany AM, Abd-Elfatah MH, Tahoon NA, Bahnasy RM, Alotaibi BS, Ghamry HI, Shukry M. Mechanistic Assessment of Anise Seeds and Clove Buds against the Neurotoxicity Caused by Metronidazole in Rats: Possible Role of Antioxidants, Neurotransmitters, and Cytokines. TOXICS 2023; 11:724. [PMID: 37755735 PMCID: PMC10538152 DOI: 10.3390/toxics11090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Long-term use of the nitroimidazole-derived antibiotic metronidazole has been associated with neuronal damage due to its ability to cross the blood-brain barrier. Polyphenol-rich plants, such as anise seeds and clove buds, are suggested to have neuroprotective effects. However, their intracellular protective pathway against metronidazole-induced neurotoxicity remains unexplored. This study aims to evaluate the potential neuroprotective benefits of anise seeds and clove buds and elucidate the proposed metronidazole-induced neurotoxicity mechanism. This study divided rats into six groups, each containing six rats. In Group I, the control group, rats were administered saline orally. Group II rats received 200 mg/kg of metronidazole orally. Group III rats received 250 mg/kg b.w. of anise seed extract and metronidazole. Group IV rats received 500 mg/kg b.w. of anise seed extract (administered orally) and metronidazole. Group V rats received 250 mg/kg b.w. of clove bud extract (administered orally) and metronidazole. Group VI rats were administered 500 mg/kg b.w. of clove bud extract and metronidazole daily for 30 consecutive days. The study evaluated the phenolic compounds of anise seeds and clove buds. Moreover, it assessed the inflammatory and antioxidant indicators and neurotransmitter activity in brain tissues. A histological examination of the brain tissues was conducted to identify neuronal degeneration, brain antioxidants, and apoptotic mRNA expression. The study found that metronidazole treatment significantly altered antioxidant levels, inflammatory mediators, and structural changes in brain tissue. Metronidazole also induced apoptosis in brain tissue and escalated the levels of inflammatory cytokines. Oral administration of metronidazole resulted in a decrease in GABA, dopamine, and serotonin and an increase in ACHE in brain tissue. Conversely, oral administration of anise and clove extracts mitigated the harmful effects of metronidazole. The neurotoxic effects of metronidazole appear to stem from its ability to reduce antioxidants in brain tissue and increase nitric oxide production and apoptosis. The study concludes that neuronal damage caused by metronidazole is significantly mitigated by treatment with anise and clove extracts.
Collapse
Affiliation(s)
- Amira M. El-Moslemany
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31732, Egypt; (A.M.E.-M.); (R.M.B.)
| | - Mai Hussein Abd-Elfatah
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31732, Egypt; (A.M.E.-M.); (R.M.B.)
| | - Nawal A. Tahoon
- Department of Home Economics, Faculty of Specific Education, Banha University, Banha 13511, Egypt;
| | - Rasha M. Bahnasy
- Nutrition and Food Science Department, Faculty of Home Economics, Al-Azhar University, Tanta 31732, Egypt; (A.M.E.-M.); (R.M.B.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
3
|
Xue Q, Xiang Z, Wang S, Cong Z, Gao P, Liu X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front Nutr 2022; 9:1002147. [PMID: 36313111 PMCID: PMC9614275 DOI: 10.3389/fnut.2022.1002147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced to tropical regions worldwide. As an ingredient in perfumes, lotions, and food preservation, it is widely used in the food and cosmetic industries. Also, it is used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum. In addition to eugenol, isoeugenol, eugenol acetate, β-caryophyllene and α-humulene are the main chemical constituents. The chemical constituents of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant, antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective, anti-obesity, antiulcer, etc. This review aims to comprehend the information on its taxonomy and botany, nutritional composition, chemical composition, bioactivities and their mechanisms, toxicity, and potential applications. This review will be a comprehensive scientific resource for those interested in pursuing further research to explore its value in food.
Collapse
Affiliation(s)
- Qing Xue
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zedong Xiang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengguang Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhufeng Cong
- Shandong Provincial Institute of Cancer Prevention and Treatmen, Jinan, Shandong, China
| | - Peng Gao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,Peng Gao,
| | - Xiaonan Liu
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Xiaonan Liu,
| |
Collapse
|
4
|
Amir Rawa MS, Mazlan MKN, Ahmad R, Nogawa T, Wahab HA. Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer's Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:1476. [PMID: 35684249 PMCID: PMC9183156 DOI: 10.3390/plants11111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) causes progressive memory loss and cognitive dysfunction. It is triggered by multifaceted burdens such as cholinergic toxicity, insulin resistance, neuroinflammation, and oxidative stress. Syzygium plants are ethnomedicinally used in treating inflammation, diabetes, as well as memory impairment. They are rich in antioxidant phenolic compounds, which can be multi-target neuroprotective agents against AD. This review attempts to review the pharmacological importance of the Syzygium genus in neuroprotection, focusing on anti-cholinesterase, anti-diabetic, anti-inflammatory, and antioxidant properties. Articles published in bibliographic databases within recent years relevant to neuroprotection were reviewed. About 10 species were examined for their anti-cholinesterase capacity. Most studies were conducted in the form of extracts rather than compounds. Syzygium aromaticum (particularly its essential oil and eugenol component) represents the most studied species owing to its economic significance in food and therapy. The molecular mechanisms of Syzygium species in neuroprotection include the inhibition of AChE to correct cholinergic transmission, suppression of pro-inflammatory mediators, oxidative stress markers, RIS production, enhancement of antioxidant enzymes, the restoration of brain ions homeostasis, the inhibition of microglial invasion, the modulation of ß-cell insulin release, the enhancement of lipid accumulation, glucose uptake, and adiponectin secretion via the activation of the insulin signaling pathway. Additional efforts are warranted to explore less studied species, including the Australian and Western Syzygium species. The effectiveness of the Syzygium genus in neuroprotective responses is markedly established, but further compound isolation, in silico, and clinical studies are demanded.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Mohd Khairul Nizam Mazlan
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Rosliza Ahmad
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Technology Platform Division, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
5
|
Agboola JB, Ehigie AF, Ehigie LO, Ojeniyi FD, Olayemi AA. Ameliorative role of Syzygium aromaticum aqueous extract on synaptosomal tyrosine hydroxylase activity, oxidative stress parameters, and behavioral changes in lead-induced neurotoxicity in mice. J Food Biochem 2022; 46:e14115. [PMID: 35246863 DOI: 10.1111/jfbc.14115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 01/30/2022] [Indexed: 01/16/2023]
Abstract
This study reports the protective role of the aqueous extract of Syzygium aromaticum (ESA) against lead (Pb)-induced neurotoxicity in mice. Thirty male mice weighing between 18 g and 25 g were randomly divided into five groups. (1) Group 1 (control group), (2) group 2 (Pb-test group): was administered with a solution containing 0.1% (w/v) of lead acetate (PbAc), (3) group 3 (ESA + Pb100 group): was administered with 0.1% (w/v) of PbAc followed by 100 mg/kg of S. aromaticum extract by gavage, (4) group 4 (ESA + Pb200): was administered with 0.1% (w/v) of PbAc followed by 200 mg/kg of S. aromaticum extract, and (5) group 5 (ESA-group): was administered with 100 mg/kg of S. aromaticum. Level of lead was determined by atomic absorption spectroscopy. Cerebral cortex synaptosomes prepared from mice administered orally with lead-acetate shown a significantly increased (p < .05) in tyrosine hydroxylase and protein carbonyl level and significantly decreased (p < .05) superoxide dismutase, glutathione reductase, and glutathione transferase activities. Also, there was a significant increase in brain lead concentration level, however, it was observed that S. aromaticum significantly reduced (p < .05) the level of lead at all tested doses. S. aromaticum rescued cerebral cortex synaptosomes from lead-induced neurotoxicity by relieving oxidative stress and abating elevated tyrosine hydroxylase activity. Moreover, S. aromaticum at the different dose grade (100 mg and 200 mg) abrogated the loss of motor performance in mice groups induced with lead. Altogether, our findings showed that S. aromaticum possesses antioxidant and neuro-modulatory potential against lead-induced neuronal damage. PRACTICAL APPLICATIONS: Environmental pollution with heavy metals is a known public health concern and their incremental concentrations in soil and water have risen to an unprecedented degree. Lead is one of the top 10 contaminants on the WHO's list of substances of greatest public health concern that impact the brain. However, exogenous natural bioactive supplements molecules could be one of the remedies to reduce Pb-induced toxicity. Our findings indicate therefore that, S. aromaticum could be a good fit for lowering Pb neurotoxicity and could be suggested as a neuroprotective molecule against neurodegenerative diseases involving catecholaminergic dysfunction induced by metallic elements.
Collapse
Affiliation(s)
- James Busayo Agboola
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adeola Folashade Ehigie
- Department of Biochemistry, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Leonard Ona Ehigie
- Department of Biochemistry, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Fiyinfoluwa Demilade Ojeniyi
- Department of Biochemistry, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Akintola Adebola Olayemi
- Department of Science Laboratory Technology, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|