1
|
Karaca O, Akaras N, Şimşek H, Gür C, İleritürk M, Küçükler S, Gencer S, Kandemir FM. Therapeutic potential of rosmarinic acid in tramadol-induced hepatorenal toxicity: Modulation of oxidative stress, inflammation, RAGE/NLRP3, ER stress, apoptosis, and tissue functions parameters. Food Chem Toxicol 2025; 197:115275. [PMID: 39848458 DOI: 10.1016/j.fct.2025.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
AIM Tramadol (TRM), a widely used opioid analgesic for moderate to severe pain, is associated with liver and kidney toxicity at high doses or prolonged use. This study investigates the protective role of rosmarinic acid (RA), a natural phenolic compound known for its antioxidant, anti-inflammatory, and cell-protective properties, against TRM-induced hepatorenal toxicity. METHODS Thirty-five male Wistar rats were divided into five groups: Control, TRM, RA, TRM + RA25, and TRM + RA50. Rats received TRM (50 mg/kg) and RA (25 or 50 mg/kg), with liver and kidney function tests, oxidative stress, inflammation, ER stress, apoptosis, and tissue damage indicators assessed through qRT-PCR, ELISA, Western blotting, H&E, and immunohistochemical analysis. RESULTS TRM induced liver and kidney dysfunctions, evident from increased ALT, AST, ALP, urea, creatinine, nephrin, TIM-1 and 8-OHdG levels, along with activated oxidative stress, inflammation, ER stress, and apoptosis pathways. RA significantly reduced these effects, ameliorating histologic and immunohistochemical markers of tissue damage and inflammation. CONCLUSION RA demonstrates therapeutic potential by mitigating TRM-induced hepatorenal toxicity and preserving tissue integrity.
Collapse
Affiliation(s)
- Onur Karaca
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Selman Gencer
- Department of Internal Diseases, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
2
|
Ekpono EU, Aja PM, Ibiam UA, Agu PC, Eze ED, Afodun AM, Okoye OG, Ifie JE, Atoki AV. Cucurbita Pepo L. Seed Oil Modulates Dyslipidemia and Neuronal Dysfunction in Tramadol-Induced Toxicity in Wistar Albino Rats. Dose Response 2024; 22:15593258241290458. [PMID: 39381131 PMCID: PMC11457233 DOI: 10.1177/15593258241290458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Objective: The modulating effects of Cucurbita pepo seed oil (CPSO) on dyslipidemia and neuronal dysfunction in tramadol toxicity were studied. Methods: Fifty-six albino rats were divided into seven groups of eight rats each after a 2-week acclimatization period. All animals had unrestricted access to water and feed, and treatments were administered orally once daily for 42 days. Glutamate dehydrogenase and glutaminase activities were assessed using brain homogenate, while lipid profiles were analyzed in serum samples. Results: Tramadol toxicity was evidenced by significant (P < 0.05) increases in brain glutamate dehydrogenase along with significant (P < 0.05) decreases in the activities of glutaminase in the group administered only tramadol. Also, serum levels of total cholesterol, LDL-C and triglycerides also increased significantly (P < 0.05) following administration of tramadol with decreased level of HDL-C (P < 0.05). However, treatment with CPSO significantly restored the activities and levels of the altered biochemical parameters in a dose-dependent manner. The results of the biochemical investigation using the lipid profile and the enzymes of glutamate metabolism were corroborated by the results obtained from the histopathological examination of the brain. Conclusion: The results of this study therefore suggest that tramadol-induced dyslipidemia and neuronal dysfunction be managed and prevented by the administration of Cucurbita pepo seed oil.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| | - Udu Ama Ibiam
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Adam Moyosore Afodun
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, Busitema University, Uganda
| | - Osita Gabriel Okoye
- Department of Science Laboratory Technology, Federal Polytechnic, Oko, Nigeria
| | - Josiah Eseoghene Ifie
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| | - Ayomide Victor Atoki
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
3
|
Ölmeztürk Karakurt TC, Eren N, Subaşı F, Kuyrukluyıldız U, Çoban TA, Süleyman H, Mokhtare B. Effects of taxifolin on tramadol-induced oxidative and inflammatory liver injury in rats: an experimental study. Drug Chem Toxicol 2024; 47:457-462. [PMID: 37042292 DOI: 10.1080/01480545.2023.2199175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
In this experimental study we aimed to investigate the biochemical and histopathological effects of concomitantly administered taxifolin on tramadol-induced liver damage in rats. The rats were divided into three groups; control group (CG), tramadol alone (TRG), and taxifolin + tramadol given (TTRG) groups. Malondialdehyde (MDA), total glutathione (tGSH), total oxidant status (TOS), total antioxidant status (TAS), nuclear factor-kappa beta (NF-kB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) levels were measured in liver tissues. Liver tissues were also examined histopathologically. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were determined in blood samples. In tissue analyses, determinants of oxidative stress and inflammation, all were significantly higher in the TRG group compared with the control and TTRG groups. In the TTRG group, all oxidative stress and inflammation markers were significantly lower than in the TRG group. In addition, there was not any significant difference between the control and TTRG groups regarding the TOS and TAS status. Serum liver enzymes were also significantly higher in the TRG group than in the other two groups. In histopathological examinations, the control group had a normal histological appearance. Degenerative-necrotic hepatocytes and hemorrhage, which were seen at a severe level in the TRG group, were found to be moderate in the treated TTRG group. In addition, mononuclear cell infiltrations were found to be severe in the TRG group and mild in the treated TTRG group. Finally it was concluded that Taxifolin alleviated the toxic effects of tramadol on the liver including the histopathological and biochemical changes as well as the oxidative damage.
Collapse
Affiliation(s)
- Tülay Ceren Ölmeztürk Karakurt
- Anesthesiology and Reanimation Clinic, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Nurhan Eren
- Anesthesiology and Reanimation Clinic, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Faruk Subaşı
- Anesthesiology and Reanimation Clinic, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan, Turkey
| | - Ufuk Kuyrukluyıldız
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Taha Abdulkadir Çoban
- Department of Clinical Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Halis Süleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
4
|
Soares-Cardoso C, Leal S, Sá SI, Dantas-Barros R, Dinis-Oliveira RJ, Faria J, Barbosa J. Unraveling the Hippocampal Molecular and Cellular Alterations behind Tramadol and Tapentadol Neurobehavioral Toxicity. Pharmaceuticals (Basel) 2024; 17:796. [PMID: 38931463 PMCID: PMC11206790 DOI: 10.3390/ph17060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Tramadol and tapentadol are chemically related opioids prescribed for the analgesia of moderate to severe pain. Although safer than classical opioids, they are associated with neurotoxicity and behavioral dysfunction, which arise as a concern, considering their central action and growing misuse and abuse. The hippocampal formation is known to participate in memory and learning processes and has been documented to contribute to opioid dependence. Accordingly, the present study assessed molecular and cellular alterations in the hippocampal formation of Wistar rats intraperitoneally administered with 50 mg/kg tramadol or tapentadol for eight alternate days. Alterations were found in serum hydrogen peroxide, cysteine, homocysteine, and dopamine concentrations upon exposure to one or both opioids, as well as in hippocampal 8-hydroxydeoxyguanosine and gene expression levels of a panel of neurotoxicity, neuroinflammation, and neuromodulation biomarkers, assessed through quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of hippocampal formation sections showed increased glial fibrillary acidic protein (GFAP) and decreased cluster of differentiation 11b (CD11b) protein expression, suggesting opioid-induced astrogliosis and microgliosis. Collectively, the results emphasize the hippocampal neuromodulator effects of tramadol and tapentadol, with potential behavioral implications, underlining the need to prescribe and use both opioids cautiously.
Collapse
Affiliation(s)
- Cristiana Soares-Cardoso
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Sandra Leal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Susana I. Sá
- RISE-HEALTH, Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal;
| | - Rita Dantas-Barros
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- FOREN-Forensic Science Experts, Av. Dr. Mário Moutinho 33-A, 1400-136 Lisboa, Portugal
| | - Juliana Faria
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Joana Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (C.S.-C.); (S.L.); (R.D.-B.); or (R.J.D.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
5
|
Ekpono EU, Eze ED, Adam AM, Ibiam UA, Obasi OU, Ifie JE, Ekpono EU, Alum EU, Noreen S, Awuchi CG, Aja PM. Ameliorative Potential of Pumpkin Seed Oil ( Cucurbita pepo L.) Against Tramadol-Induced Oxidative Stress. Dose Response 2024; 22:15593258241226913. [PMID: 38234695 PMCID: PMC10793191 DOI: 10.1177/15593258241226913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Background of the Study The increase in the therapeutic use of tramadol in the management of moderate to severe pains in some disease conditions and its unregulated access has led to its associated toxicity and there is little or no information on the protection against its associated toxicity. Aim of the Study Considering the medicinal value of pumpkin seed oil, its availability, and neglected use, it becomes necessary to evaluate the possible potential of the seed oil in tramadol-induced oxidative stress in Wister Albino rats. Methods of the Study This study used fifty-six (56) albino rats to determine the impact of Cucurbita pepo seed oil (CPSO) on tramadol-induced oxidative stress. The rats were grouped into 7. After a week of acclimatization, rats in group 1 (normal control) had access to water and food, while rats in group 2 received 5 mL/Kg (b.w) of normal saline. 100 mg/kg of tramadol (TM) was delivered to groups 3-6 to induce toxicity. The third group (TM control) received no treatment, whilst the other 3 groups (TM-CPSO treatment groups) received 5, 2.5, and 1.5 mL/Kg of CPSO, respectively. Group 7 received only 5 mL/kg CPSO (CPSO group). Similarly, groups 2 through 7 had unrestricted access to food and water for 42 days and received treatments via oral intubation once per day. Indicators of oxidative stress were discovered in the brain homogenate. Results TM toxicity was demonstrated by a considerable increase (P < .05) in the brain MDA level and a significant drop (P < .05) in the brain GSH level, as well as a significant reduction (P < .05) in GPx, catalase, SOD, GST, and quinone reductase activities. Conclusion The dose-dependent delivery of CPSO was able to restore not only the activity but also the concentrations of the altered markers.
Collapse
Affiliation(s)
- Ezebuilo U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Science Laboratory Technology, Federal Polytechnique, Oko, Nigeria
| | - Ejike D. Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Afodun M Adam
- Department of Medical Imaging Science, School of Health Sciences, University of Rwanda, Rwanda
| | - Udu A. Ibiam
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Orji U. Obasi
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Josiah E. Ifie
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| | - Ejike U. Ekpono
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Esther U. Alum
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Research Publication and Extensions, Kampala International University, Kampala, Uganda
| | - Sana Noreen
- University Institute of Diet and Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Chinaza G. Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| | - Patrick M. Aja
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Kampala International University, Bushenyi, Uganda
| |
Collapse
|
6
|
Mohammadnejad L, Soltaninejad K, Seyedabadi M, Ghasem Pouri SK, Shokrzadeh M, Mohammadi H. Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol. Toxicol Res (Camb) 2021; 10:1162-1170. [PMID: 34956619 DOI: 10.1093/toxres/tfab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tramadol (TR) is a centrally acting analgesic drug that is used to relieve pain. The therapeutic (0.1-0.8 mg/l), toxic (1-2 mg/l) and lethal (>2 mg/l) ranges were reported for TR. The present study was designed to evaluate which doses of TR can induce liver mitochondrial toxicity. Mitochondria were isolated from the five rats' liver and were incubated with therapeutic to lethal concentrations (1.7-600 μM) of TR. Biomarkers of oxidative stress including: reactive oxygen species (ROS), lipid peroxidation (LPO), protein carbonyl content, glutathione (GSH) content, mitochondrial function, mitochondrial membrane potential (MMP) and mitochondrial swelling were assessed. Our results showed that ROS and LPO at 100 μM and protein carbonylation at 600 μM concentrations of TR were significantly increased. GSH was decreased specifically at 600 μM concentration. Mitochondrial function, MMP and mitochondrial swelling decreased in isolated rat liver mitochondria after exposure to 100 and 300 μM, respectively. This study suggested that TR at therapeutic and toxic levels by single exposure could not induce mitochondrial toxicity. But, in lethal concentration (≥100 μM), TR induced oxidative damage and mitochondria dysfunction. This study suggested that ROS overproduction by increasing of TR concentration induced mitochondrial dysfunction and caused mitochondrial damage via Complex II and membrane permeability transition pores disorders, MMP collapse and mitochondria swelling.
Collapse
Affiliation(s)
- Leila Mohammadnejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Kambiz Soltaninejad
- Department of Forensic Toxicology, Legal Medicine Research Center, Legal Medicine Organization, Tehran 48157-33971, Iran
| | - Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Seyed Khosro Ghasem Pouri
- Department of Emergency Medicine, School of Medicine, Antimicrobial Resistance Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| |
Collapse
|
7
|
Licata A, Zerbo M, Como S, Cammilleri M, Soresi M, Montalto G, Giannitrapani L. The Role of Vitamin Deficiency in Liver Disease: To Supplement or Not Supplement? Nutrients 2021; 13:4014. [PMID: 34836267 PMCID: PMC8620546 DOI: 10.3390/nu13114014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past few years, growing interest has been shown for the impact of dietary requirements and nutritional factors on chronic diseases. As a result, nutritional programs have been reinforced by public health policies. The precise role of micronutrients in chronic liver disease is currently receiving particular attention since abnormalities in vitamin levels are often detected. At present, treatment programs are focused on correcting vitamin deficiencies, which are frequently correlated to higher rates of comorbidities with poor outcomes. The literature reviewed here indicates that liver diseases are often related to vitamin disorders, due to both liver impairment and abnormal intake. More specific knowledge about the role of vitamins in liver disease is currently emerging from various results and recent evidence. The most significant benefits in this area may be observed when improved vitamin intake is combined with a pharmacological treatment that may also affect the progression of the liver disease, especially in the case of liver tumors. However, further studies are needed.
Collapse
Affiliation(s)
- Anna Licata
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Maddalena Zerbo
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Silvia Como
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Marcella Cammilleri
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Maurizio Soresi
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Giuseppe Montalto
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
| | - Lydia Giannitrapani
- Internal Medicine & Hepatology Section, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties—PROMISE, University of Palermo Medical School, 90127 Palermo, Italy; (M.Z.); (S.C.); (M.C.); (M.S.); (G.M.); (L.G.)
- Institute for Biochemical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
8
|
Bakr MH, Radwan E, Shaltout AS, Farrag AA, Mahmoud AR, Abd-Elhamid TH, Ali M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci Rep 2021; 11:18772. [PMID: 34548593 PMCID: PMC8455605 DOI: 10.1038/s41598-021-98206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Tramadol is an opioid extensively used to treat moderate to severe pain; however, prolonged therapy is associated with several tissues damage. Chronic use of tramadol was linked to increased hospitalizations due to cardiovascular complications. Limited literature has described the effects of tramadol on the cardiovascular system, so we sought to investigate these actions and elucidate the underlying mechanisms. Mice received tramadol hydrochloride (40 mg/kg body weight) orally for 4 successive weeks. Oxidative stress, inflammation, and cardiac toxicity were assessed. In addition, eNOS expression was evaluated. Our results demonstrated marked histopathological alteration in heart and aortic tissues after exposure to tramadol. Tramadol upregulated the expression of oxidative stress and inflammatory markers in mice heart and aorta, whereas downregulated eNOS expression. Tramadol caused cardiac damage shown by the increase in LDH, Troponin I, and CK-MB activities in serum samples. Overall, these results highlight the risks of tramadol on the cardiovascular system.
Collapse
Affiliation(s)
- Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Anatomy, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Helmy MA, Abdalla HA, Abd El Rahman HA, Ahmed DAM. Hepatotoxic effect of tramadol and O-desmethyltramadol in HepG2 cells and potential role of PI3K/AKT/mTOR. Xenobiotica 2021; 51:1029-1037. [PMID: 34319855 DOI: 10.1080/00498254.2021.1961919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The aim of this study was to compare the in vitro cytotoxic effect of tramadol and M1 metabolite in HepG2 cell line, the underlying mechanism, and PI3K/AKT/mTOR as potential target.2. Concentrations representing therapeutic level for tramadol (2 µM) and M1 metabolite (0.5 µM) were used. In addition, other increasing concentrations representing higher toxic levels were used (6, 10 µM for tramadol and 1.5, 2.5 µM for M1 metabolites). Cytotoxicity was assessed at 24, 48 and 72 h.3. Both tramadol and M1 metabolites were able to produce cytotoxicity in a dose and time dependent manner. Insignificant difference was detected between cells exposed to tramadol and M1 metabolite at therapeutic concentrations. Tramadol-induced apoptotic and autophagic cell death while M1 metabolite-induced apoptosis only. For PI3K/AKT/mTOR pathway, the therapeutic concentration of tramadol was only able to increase phosphorylation of AKT while higher toxic concentrations were able to increase phosphorylation of whole pathway; Meanwhile, M1 metabolite was able to increase the phosphorylation of the whole pathway significantly in therapeutic and toxic concentrations.4. In conclusion, both tramadol and M1 are equally cytotoxic. Apoptosis and autophagy both mediate hepatic cell death. PI3K/AKT pathway is involved in apoptosis induction while autophagy is regulated through mTOR independent pathway.
Collapse
Affiliation(s)
- Manar A Helmy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Abdelaziz Abdalla
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Clinical Biochemistry and Molecular Medicine, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
| | - Heba Allah Abd El Rahman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dalia Alsaied Moustafa Ahmed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Luo C, Huang C, Zhu L, Kong L, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Ameliorates the T-2 Toxin-Triggered Intestinal Impairment in Mice by Inhibiting Inflammation and Mucosal Barrier Dysfunction through the NF-κB Signaling Pathway. Toxins (Basel) 2020; 12:toxins12120794. [PMID: 33322178 PMCID: PMC7763746 DOI: 10.3390/toxins12120794] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
T-2 toxin, a trichothecene mycotoxin produced by Fusarium, is widely distributed in crops and animal feed and frequently induces intestinal damage. Betulinic acid (BA), a plant-derived pentacyclic lupane-type triterpene, possesses potential immunomodulatory, antioxidant and anti-inflammatory biological properties. The current study aimed to explore the protective effect and molecular mechanisms of BA on intestinal mucosal impairment provoked by acute exposure to T-2 toxin. Mice were intragastrically administered BA (0.25, 0.5, or 1 mg/kg) daily for 2 weeks and then injected intraperitoneally with T-2 toxin (4 mg/kg) once to induce an intestinal impairment. BA pretreatment inhibited the loss of antioxidant capacity in the intestine of T-2 toxin-treated mice by elevating the levels of CAT, GSH-PX and GSH and reducing the accumulation of MDA. In addition, BA pretreatment alleviated the T-2 toxin-triggered intestinal immune barrier dysregulation by increasing the SIgA level in the intestine at dosages of 0.5 and 1 mg/kg, increasing IgG and IgM levels in serum at dosages of 0.5 and 1 mg/kg and restoring the intestinal C3 and C4 levels at a dosage of 1 mg/kg. BA administration at a dosage of 1 mg/kg also improved the intestinal chemical barrier by decreasing the serum level of DAO. Moreover, BA pretreatment improved the intestinal physical barrier via boosting the expression of ZO-1 and Occludin mRNAs and restoring the morphology of intestinal villi that was altered by T-2 toxin. Furthermore, treatment with 1 mg/kg BA downregulated the expression of p-NF-κB and p-IκB-α proteins in the intestine, while all doses of BA suppressed the pro-inflammatory cytokines expression of IL-1β, IL-6 and TNF-α mRNAs and increased the anti-inflammatory cytokine expression of IL-10 mRNA in the intestine of T-2 toxin-exposed mice. BA was proposed to exert a protective effect on intestinal mucosal disruption in T-2 toxin-stimulated mice by enhancing the intestinal antioxidant capacity, inhibiting the secretion of inflammatory cytokines and repairing intestinal mucosal barrier functions, which may be associated with BA-mediated inhibition of the NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Chenxi Luo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Chenglong Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Lijuan Zhu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (C.L.); (C.H.); (L.Z.); (L.K.); (Z.Y.); (L.W.); (R.L.)
- Hunan Co-innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
11
|
Wu J, Meng QH. Current understanding of the metabolism of micronutrients in chronic alcoholic liver disease. World J Gastroenterol 2020; 26:4567-4578. [PMID: 32884217 PMCID: PMC7445863 DOI: 10.3748/wjg.v26.i31.4567] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) remains an important health problem worldwide. Perturbation of micronutrients has been broadly reported to be a common characteristic in patients with ALD, given the fact that micronutrients often act as composition or coenzymes of many biochemical enzymes responsible for the inflammatory response, oxidative stress, and cell proliferation. Mapping the metabolic pattern and the function of these micronutrients is a prerequisite before targeted intervention can be delivered in clinical practice. Recent years have registered a significant improvement in our understanding of the role of micronutrients on the pathogenesis and progression of ALD. However, how and to what extent these micronutrients are involved in the pathophysiology of ALD remains largely unknown. In the current study, we provide a review of recent studies that investigated the imbalance of micronutrients in patients with ALD with a focus on zinc, iron, copper, magnesium, selenium, vitamin D and vitamin E, and determine how disturbances in micronutrients relates to the pathophysiology of ALD. Overall, zinc, selenium, vitamin D, and vitamin E uniformly exhibited a deficiency, and iron demonstrated an elevated trend. While for copper, both an elevation and deficiency were observed from existing literature. More importantly, we also highlight several challenges in terms of low sample size, study design discrepancies, sample heterogeneity across studies, and the use of machine learning approaches.
Collapse
Affiliation(s)
- Jing Wu
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| | - Qing-Hua Meng
- Department of Critical Care Medicine of Liver Disease, Beijing You-An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinical Doses of Tramadol and Tapentadol Causes Hepato- and Nephrotoxic Effects in Wistar Rats. Pharmaceuticals (Basel) 2020; 13:149. [PMID: 32664348 PMCID: PMC7407499 DOI: 10.3390/ph13070149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol are fully synthetic and extensively used analgesic opioids, presenting enhanced therapeutic and safety profiles as compared with their peers. However, reports of adverse reactions, intoxications and fatalities have been increasing. Information regarding the molecular, biochemical, and histological alterations underlying their toxicological potential is missing, particularly for tapentadol, owing to its more recent market authorization. Considering the paramount importance of liver and kidney for the metabolism and excretion of both opioids, these organs are especially susceptible to toxicological damage. In the present study, we aimed to characterize the putative hepatic and renal deleterious effects of repeated exposure to therapeutic doses of tramadol and tapentadol, using an in vivo animal model. Male Wistar rats were randomly divided into six experimental groups, composed of six animals each, which received daily single intraperitoneal injections of 10, 25 or 50 mg/kg tramadol or tapentadol (a low, standard analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively). An additional control group was injected with normal saline. Following 14 consecutive days of administration, serum, urine and liver and kidney tissue samples were processed for biochemical, metabolic and histological analysis. Repeated administration of therapeutic doses of both opioids led to: (i) increased lipid and protein oxidation in liver and kidney, as well as to decreased total liver antioxidant capacity; (ii) decreased serum albumin, urea, butyrylcholinesterase and complement C3 and C4 levels, denoting liver synthesis impairment; (iii) elevated serum activity of liver enzymes, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase, as well as lipid profile alterations, also reflecting hepatobiliary commitment; (iv) derangement of iron metabolism, as shown through increases in serum iron, ferritin, haptoglobin and heme oxygenase-1 levels. In turn, elevated serum cystatin C, decreased urine creatinine output and increased urine microalbumin levels were detected upon exposure to tapentadol only, while increased serum amylase and urine N-acetyl-β-D-glucosaminidase activities were observed for both opioids. Collectively, these results are compatible with kidney injury. Changes were also found in the expression levels of liver- and kidney-specific toxicity biomarker genes, upon exposure to tramadol and tapentadol, correlating well with alterations in lipid profile, iron metabolism and glomerular and tubular function. Histopathological analysis evidenced sinusoidal dilatation, microsteatosis, mononuclear cell infiltrates, glomerular and tubular disorganization, and increased Bowman's spaces. Although some findings are more pronounced upon tapentadol exposure, our study shows that, when compared with acute exposure, prolonged administration of both opioids smooths the differences between their toxicological effects, and that these occur at lower doses within the therapeutic range.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Doostmohammadi M, Rahimi HR. ADME and toxicity considerations for tramadol: from basic research to clinical implications. Expert Opin Drug Metab Toxicol 2020; 16:627-640. [PMID: 32476523 DOI: 10.1080/17425255.2020.1776700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Tramadol is widely being used in chronic pain management for improving patients' life quality and reducing trauma. Although it is listed in several medicinal guidelines, its use is controversial because of the conflicting results obtained in pharmacokinetic/pharmacodynamic studies. This multi-receptor drug acts as µ1 opioid receptor agonist, monoamine reuptake inhibitor, and inhibitor of ligand-gated ion channels and some special protein-coupled receptors. AREAS COVERED This review provides a comprehensive view on the pharmacokinetic, pharmacodynamic, and toxicity of tramadol with a deep look on its side effects, biochemical and pathological changes, and possible drug interactions. In addition, the main ways of tramadol poisoning management describe according to in vivo and clinical trial studies. EXPERT OPINION Given the broad spectrum of targets, increasing the cases of overdoses and toxicity, and probable drugs interaction, it is necessary to take another look at the pharmacology of tramadol. Regarding the adverse effects of tramadol on different tissues, especially the nervous system and liver tissue, more attentions to tramadol metabolites, their interaction with other drugs, and active agents seem critical. Seizure as the most cited effect of tramadol and its destructive effects on tissues would alleviate by co-administration with drugs with antioxidant properties.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences , Kerman, Iran
| |
Collapse
|
14
|
Babaei A, Kheradmand N, Baazm M, Nejati N, Khalatbari M. Protective effect of vitamin E on sperm parameters in rats infected with Candida albicans. Andrologia 2020; 52:e13593. [PMID: 32400037 DOI: 10.1111/and.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022] Open
Abstract
Candida albicans is one of the most frequent pathogens present in the reproductive system. The negative in vitro effects of C. albicans on sperm functions have previously been studied. The current study was undertaken to investigate the effects of C. albicans infection in vivo on sperm quality and to evaluate the efficacy of vitamin E administration in rats infected with C. albicans. In this study, 5 days after infection induction, animals were treated with vitamin E for 5 weeks. Thereafter, sperm parameters, lipid peroxidation (LPO), total antioxidant capacity (TAC), hormonal analysis and testis histology were evaluated. Based on the results, sperm parameters and TAC significantly reduced, while LPO and tissue damage increased (p ≤ .05) following the infection. Hormone analysis showed low LH and testosterone levels in serum of the infected rats. Treatment with vitamin E significantly (p ≤ .05) improved sperm quality and testis histology, increased TAC and reduced LPO. In addition, vitamin E administration significantly increased (p ≤ .05) serum LH and testosterone levels. These results clearly indicate that vitamin E is effective in attenuating the adverse effects of C. albicans infection on male fertility and could be used as a complementary treatment for patients who suffer from fertility disorders following C. albicans infection.
Collapse
Affiliation(s)
- Arash Babaei
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Nasrin Kheradmand
- Department of Nursing, Malayer Branch, Islamic Azad University, Malayer, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Negin Nejati
- Department of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Khalatbari
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|